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Abstract

Existing package and system configuration management tools suffer from an imperative model,
where system administration actions such as package upgrades or changes to system configuration
files are stateful: they destructively update the state of the system. This leads to many problems, such
as the inability to roll back changes easily, to deploy multiple versions of a package side-by-side,
to reproduce a configuration deterministically on another machine, or to reliably upgrade a system.
In this article we show that we can overcome these problems by moving to a purely functional
system configuration model. This means that all static parts of a system (such as software packages,
configuration files and system startup scripts) are built by pure functions and are immutable, stored
in a way analogous to a heap in a purely functional language. We have implemented this model in
NixOS, a non-trivial Linux distribution that uses the Nix package manager to build the entire system
configuration from a modular, purely functional specification.
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1 Introduction

Current operating systems are managed in an imperative way. With this we mean that
configuration management actions such as upgrading software packages, making changes
to system options, or adding additional system services are done in a stateful way: by
performing destructive updates to files. This model leads to many problems: “DLL hell”
where upgrading an application may suddenly break another because of changes to shared
components (Anderson, 2000), the inability to roll back changes easily or to reproduce a
configuration reliably, difficulty in running multiple versions of a package side-by-side, the
system being in an inconsistent state during updates, and so on.

In this article we show that it is possible to manage systems in a radically different way
by moving to a purely functional model. In this model, the static artifacts of a running
system – software packages, configuration files, system startup scripts, etc. – are generated
by functions in a purely functional specification language. Just like values in a purely
functional language, these artifacts never change after they have been built; rather, the
system is updated to a new configuration by changing the specification and rebuilding
the system from that specification. This allows a system to be built deterministically, and
therefore reproducibly. It allows the user to roll back the system to previous configurations,
since these are not overwritten. Perhaps most importantly, statelessness makes configura-
tion actions predictable: they do not mysteriously fail because of some unknown aspect of
the state of the system.

We have previously shown how package management – the installation and management
of software packages – can be done in a purely functional way, in contrast to the imperative
models of conventional tools such as RPM (Foster-Johnson, 2003). This concept was
implemented in the Nix package manager (Dolstra et al., 2004; Dolstra, 2006), summarised
in Section 3. Nix uses functional programming principles at two levels: it has a purely func-
tional build specification language that relies heavily on laziness; and it stores packages as
immutable values in what is essentially a purely functional data structure.

In this article we extend this approach from package management to system configu-
ration management. That is, not just software packages are built from purely functional
specifications, but also all other static parts of a system, such as the configuration files that
typically live in /etc under Unix. We demonstrate the feasibility of this approach by means
of NixOS, a Linux distribution that uses Nix to construct and update the whole system from
a declarative specification. Every artifact is stored under immutable paths such as

/nix/store/c6gddm8rkc05w6pmijrwp6zb76ph3prs-firefox-3.5.7
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that include a cryptographic hash of all inputs involved in building it. On NixOS, there are
no standard, “stateful” Unix system directories such as /usr or /lib, and there is only a
minimal /bin and /etc.

NixOS’s purely functional approach to configuration management gives several advan-
tages to users and administrators. Upgrading a system is much more deterministic: it does
not unexpectedly fail depending on the previous state of the system. Thus, upgrading is
as reliable as installing from scratch, which is generally not the case with other operating
systems. This also makes it easy to reproduce a configuration on a different machine. The
entire system configuration can be rolled back trivially. The system is not in an inconsis-
tent state during upgrades: upgrades are atomic. Unprivileged users can securely install
different versions of software packages without interfering with each other.

In Section 2, we argue that many of the problems in existing system configuration man-
agement tools are a result of statefulness. In Section 3, we give an overview of our previous
work on the purely functional Nix package manager. We then come to the contributions of
this article:

• We show how a full-featured Linux distribution, NixOS, can be built and configured
in a declarative way using principles borrowed from purely functional languages,
giving rise to properties such as atomicity of upgrades and the ability to roll back
(Section 4).

• We present a module system for NixOS that allows separation of concerns and con-
venient extensibility (Section 5).

• We measure the extent to which NixOS and Nix build actions are pure, discuss the
compromises to purity that were needed to build NixOS, and reflect on the strengths
and weaknesses of the purely functional model (Section 6).

2 Imperative package management

Most package management tools can be viewed as having an imperative model. That is,
deployment actions performed by these tools are stateful; they destructively update files
on the system. For instance, most Unix package managers, such as the Red Hat Package
Manager (RPM) (Foster-Johnson, 2003), Debian’s apt and Gentoo’s Portage, store the files
belonging to each package in the conventional Unix file system hierarchy, e.g. directories
such as /bin. Packages are upgraded to newer versions by overwriting the old versions. If
shared components are not completely backwards-compatible, then upgrading a package
can break other packages. Upgrades or uninstallations cannot easily be rolled back unless
the package manager makes a backup of the overwritten files. The Windows registry is
similarly stateful: it is often impossible to have two versions of a Windows application
installed on the same system because they would overwrite each other’s registry entries.

Thus, the filesystem (e.g. /bin and /etc on Unix, or C:\Windows\System32 on Win-
dows) and the registry are used like mutable global variables in a programming language.
This means that there is no referential transparency. For instance, a package may have a
filesystem reference to some other package – that is, it contains a path to a file in another
package, e.g. /usr/bin/perl. But this reference does not point to a fixed value; the referent
can be updated at any point, making it hard to give any assurances about the behaviour
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of the packages that refer to it. For instance, upgrading one application might trigger an
upgrade of the Perl interpreter in /usr/bin/perl, which might cause other applications to
break. This is known as “DLL hell” or “dependency hell”.

Statefulness also makes it hard to support multiple versions of a package. If two pack-
ages depend on conflicting versions of /usr/bin/perl, we cannot satisfy both at the same
time. Instead, we would have to arrange for the versions to be placed under different file-
names, which requires explicit actions from the packager or the administrator (e.g., install
a Perl version under /usr/local/perl-5.8). This also applies to configuration files. Imagine
that we have a running Apache web server and we wish to test a new version (without
interfering with the currently running server). To do this, we install the new version in
a different location from the old version. However, to then run it, we need to clone the
configuration file httpd.conf because it contains the path to the Apache installation; and
then we need to clone the Apache start script because it contains the paths of Apache and
the configuration file. Thus the change to one part of the dependency graph of packages
and configuration files ripples upwards, requiring manual changes to other nodes in the
graph.

Furthermore, stateful configuration changes such as upgrades are not atomic (or trans-
actional). Since most packages consist of multiple files, an upgrade entails overwriting
each file in sequence. This means that during the upgrade, the package is in an inconsistent
state: some files belong to the old version, and some to the new. If the user tries to run
the package during this time window, the results are undefined; it may even crash. Also, if
the upgrade is interrupted for whatever reason, the package may be left in a permanently
broken state. This extends to the level of upgrading entire systems. For instance, a power
failure during a major upgrade of a Linux or Mac OS X installation is likely to leave the
system in a broken, perhaps unbootable state.

Likewise, building a package is a stateful operation. In RPM, for instance, the building
of a binary package is described by a spec file that lists the build actions that must be per-
formed to construct the package, along with metadata such as its dependencies. However,
the dependency specification has two problems.

First, it is hard to guarantee that the dependency specification is complete. If, for in-
stance, the package calls the python program, it will build and run fine on the build machine
if it has the python package installed, even if that package is not listed as a dependency.
However, on the end user machine python may be missing, and the package will fail
unexpectedly.

Second, RPM dependency specifications are nominal, that is, they specify just the name
and possibly some version constraints of each dependency, e.g. Requires: python ≥ 2.4.
A package with this dependency will build on any system where python with a sufficiently
high version is registered in RPM’s database; however, the resulting binary RPM has no
record of precisely what instance of python was used at build time, and therefore there
is no way to deterministically reproduce it. Indeed, it is not clear how to bootstrap a set
of source RPMs: one quickly runs into circular build-time dependencies and incomplete
dependency specifications. (See (Hart & D’Amelia, 2002) for additional problems with
RPM, such as sensitivity to the order in which packages are installed.)

Package managers like RPM are even more stateful when it comes to non-software
artifacts such as configuration files in /etc. When a configuration file is installed for the
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first time, it is treated as a normal package file. On upgrades, however, it cannot be simply
overwritten with the new version, since the user may have made modifications to it. There
are many ad hoc (package-specific) solutions to this problem: the file can be ignored,
hoping that the old one still works; it can be overwritten (making a backup of the old
version), hoping that the user’s changes are inessential; the user can be presented with the
delta between the original and modified version and asked to manually re-apply the changes
to the new version; or a post-install script (delivered as part of the package’s meta-data)
can attempt to merge the changes automatically. Indeed, post-install scripts are frequently
used to perform arbitrary, strongly stateful, actions.

Even worse, configuration changes are typically not under the control of a system con-
figuration management tool like RPM at all. Users might manually edit configuration files
in /etc or change some registry settings, or run tools that make such changes for them –
but either way there is no trace of such actions. The fact that a running system is thus the
result of many ad hoc stateful actions makes it hard to reproduce (part of) a configuration
on another machine, and to roll back configuration changes.

Of course, configuration files could be placed under revision control, but that does not
solve all of the problems. For instance, configuration data such as files in /etc are typically
related to the software packages installed on the system. Thus, rolling back the Apache
configuration file may also require rolling back the Apache package (for instance, if we
upgraded Apache, made some related changes to the configuration file, and now wish
to undo the upgrade). Furthermore, changes to configuration files are often effected in
very different ways: a change to the Unix filesystem table /etc/fstab might be effected by
running mount -a to mount any new filesystems added to that file, while a change to the
Apache configuration file httpd.conf requires running a command like /etc/init.d/apache

reload. Thus any change to a configuration file, including a rollback, may require specific
knowledge about additional commands that need to be performed.

In summary, all this statefulness comes at a high price to users:

• It is difficult to allow multiple versions of a package on the system at the same time,
or to run multiple instantiations of a service (such as a web server).

• There is no traceability: the configuration of the system is the result of a sequence of
stateful transformations that are not under the control of a configuration management
system. This makes it hard to reproduce a configuration elsewhere. The lack of
traceability specifically makes rollbacks much harder.

• Since configurations are the result of stateful transformations, there is little pre-
dictability. For instance, upgrading a Linux or Windows installation tends to be
much more likely to cause errors than doing a clean reinstall, precisely because the
upgrade depends on the previous state of the system, while a clean reinstall has no
such dependency.

• Upgrades are not atomic, which makes them inherently dangerous operations.

These problems are similar to those caused by the lack of referential transparency in
imperative programming languages, such as the difficulty in reasoning about the behaviour
of functions in the presence of mutable global variables or I/O. Indeed, the absence of
such problems is a principal feature of purely functional languages (Hudak, 1989) such as
Haskell (Peyton Jones, 2004). In such languages, the result of a function depends only on
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expressions
e ::= x identifier

| nat | str literal
| [e∗] list
| rec? {b∗} (optionally recursive) attribute set
| let b∗ in e local declarations
| e.x attribute selection
| x: e plain λ -abstraction
| {fs?}: e λ -abstraction pattern-matching an attribute set
| e e function application
| if e then e else e conditional
| with e1;e2 add attributes from set e1 to lexical scope of e2

| (e) grouping

bindings
b ::= ap = e; allows concise nested attribute sets, e.g. x.y.z = true

| inherit x∗; copy value of attribute x from lexical scope

attribute path
ap ::= x.ap | x

formals
fs ::= x, fs | x | ... “...” means ignore unmatched attributes

string literals
str ::= "(char | ${e})∗" strings; interpolation using ${e}

| ’’(char | ${e})∗’’ strings with common indentation removed
| uri Uniform Resource Identifiers (Berners-Lee et al., 1998)

Fig. 1. Informal partial syntax overview of the Nix expression language

its inputs, and variables are immutable. This suggests that the deployment problems above
go away if we can somehow move to a purely functional way to store software packages
and configuration data.

3 Purely functional package management

Nix (Dolstra et al., 2004; Dolstra, 2006), the package manager underlying NixOS, has such
a purely functional model. This means that packages are built by functions whose outputs
in principle depend only on their function arguments, and that packages never change after
they have been built.

Nix expressions Packages are built from Nix expressions, a dynamically typed, lazy, purely
functional language. (For convenience, Figure 1 summarises the language constructs used
in this article. These are described below.) The goal of Nix expressions is to describe
graphs of build actions called derivations. A derivation consists of a build script, a set
of environment variables, and a set of dependencies (source files or other derivations). A
package is built by recursively building the dependencies, then invoking the build script
with the given environment variables.
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{ stdenv, fetchurl, ghc, X11, xmessage }: 1

stdenv.mkDerivation 2 (rec {

name = "xmonad-0.5";

src = fetchurl {

url = "http://hackage.haskell.org/.../${name}.tar.gz";

sha256 = "1i74az7w7nbirw6n6lcm44vf05hjq1yyhnsssc779yh0n00lbk6g";

};

buildInputs = [ ghc X11 ]; 3

configurePhase = ’’ 4

substituteInPlace XMonad/Core.hs --replace \

’"xmessage"’ ’"${xmessage}/bin/xmessage"’ 5

ghc --make Setup.lhs

./Setup configure --prefix="$out" 6

’’;

buildPhase = ’’

./Setup build

’’;

installPhase = ’’

./Setup copy

./Setup register --gen-script

’’;

meta = { 7

description = "A tiling window manager for X";

};

})

Fig. 2. xmonad.nix: Nix expression for xmonad

Figure 2 shows the Nix expression for the xmonad package, a tiling X11 window man-
ager written in Haskell (http://xmonad.org/). This expression is a function that takes a set
of arguments (declared at point 1 ) and returns a derivation (at 2 ). The most important data
type in the Nix expression language is the attribute set, a set of name/value pairs, written as
{ name1 = value1; ...; namen = valuen; }. The keyword rec defines a recursive attribute
set, i.e., the attributes can refer to each other. The syntax { arg1, ..., argn }: body defines
an anonymous function that must be called with an attribute set containing the specified
named attributes.

The arguments of the xmonad function denote dependencies (stdenv, ghc, X11, and
xmessage), as well as a helper function (fetchurl). stdenv is a package that provides a
standard Unix build environment, containing tools such as a C compiler and basic Unix
shell tools. X11 is a package providing the most essential X11 client libraries.

The function stdenv.mkDerivation is a helper function that makes writing build actions
easier. Build actions generally have a great deal of “boiler plate” code. For instance,
most Unix packages are built by a standard sequence of commands: tar xf sources to
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{ stdenv, fetchurl, pkgconfig, libXaw, libXt }:

stdenv.mkDerivation {

name = "xmessage-1.0.2";

src = fetchurl {

url = mirror://xorg/individual/app/xmessage-1.0.2.tar.bz2;

sha256 = "1hy3n227iyrm323hnrdld8knj9h82fz6s7x6bw899axcjdp03d02";

};

buildInputs = [ pkgconfig libXaw libXt ];

}

Fig. 3. xmessage.nix: Nix expression for xmessage

unpack the sources, ./configure --prefix=prefix to detect system characteristics and gen-
erate makefiles, make to compile, and make install to install the package in the directory
prefix . The function mkDerivation captures this commonality, allowing packages to be
written succinctly. For instance, Figure 3 shows the function that builds the xmessage

package. The xmonad package, being Haskell-based, does not build in this standard way,
so mkDerivation allows the various phases of the package build sequence to be overridden,
e.g. configurePhase 4 specifies shell commands that configure the package. On the other
hand, unpacking xmonad’s source follows the convention, so it is not necessary to specify
an unpackPhase – the default functionality provided by mkDerivation suffices. We empha-
sise that mkDerivation is just a function that abstracts over a common build pattern, not a
language construct: functions that abstract over other build patterns can easily be written.
For instance, the xmonad package makes use of Haskell’s Cabal build system (http://

haskell.org/cabal/). It therefore makes sense to extract the Cabal build commands (all
the invocations of ./Setup) into a Cabal-specific wrapper around mkDerivation, thereby
allowing the expression specific to xmonad to be reduced to the same conciseness as the
xmessage example. Due to the functional nature of the Nix expression language, nearly
all recurring patterns can be captured in functions in this way. (Indeed, the Nix Packages
collection provides a function to build Cabal-based packages.)

All attributes in the call to mkDerivation are passed as environment variables to the build
script (except the meta attribute 7 , which is filtered out by the mkDerivation function).
For instance, the environment variable name will be set to xmonad-0.5. For attributes that
specify other derivations, the paths of the packages they build are substituted. For instance,
the attribute buildInputs is bound to a list containing ghc and X11 as elements (in Nix ex-
pressions, list elements are separated by space) 3 . The paths to these dependencies are thus
available to the build script via the buildInputs environment variable, which in turn is used
by stdenv to generically set up other environment variables such as the C include file search
path and the linker search path. Likewise, the path to the xmessage package is substituted
in the source file XMonad/Core.hs 5 . (Note that we can conveniently splice arbitrary Nix
expresssions into strings using string interpolations of the form ${e}.) Finally, the function
fetchurl returns a derivation that downloads the specified file and verifies its content against
the given cryptographic hash (Schneier, 1996); thus, the environment variable src will hold
the location of the xmonad source distribution, which the stdenv build script will unpack.
(The function fetchurl may seem impure, but because the output is practically guaranteed
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rec {

xmonad = import .../xmonad.nix { 8

inherit stdenv fetchurl ghc X11 xmessage;

};

xmessage = import .../xmessage.nix { ... };

ghc = ghc68;

ghc68 = import ../development/compilers/ghc-6.8 {

inherit fetchurl stdenv readline perl gmp ncurses m4;

ghc = ghcboot;

};

ghcboot = ...;

stdenv = ...;

...

}

Fig. 4. all-packages.nix: Function calls to instantiate packages

to have a specific content by the cryptographic hash, which Nix verifies, it is pure as far as
the purely functional deployment model is concerned.)

When invoking a build script to perform a derivation, Nix will set the special environ-
ment variable out to the intended location in the filesystem where the package is to be
stored. Thus, xmonad is configured with a build prefix set to the path given in out 6 .

Since the expression that builds xmonad is a function, it must be called with concrete
values for its arguments to obtain an actual derivation. This is the essence of the purely
functional package management paradigm: the function can be called any number of times
with different arguments to obtain different instances of xmonad. Just as multiple calls to a
function in a purely functional language cannot “interfere” with each other, these instances
are independent: they will not overwrite each other, because Nix ensures that each instance
is called with a different out environment variable, as we will see below.

Figure 4 shows an attribute set containing several concrete derivations resulting from
calls to package build functions. The attribute xmonad is bound to the result of a call to the
function in Figure 2 8 . Thus, xmonad is a concrete derivation that can be built. Likewise,
the arguments are concrete derivations, e.g. xmessage is the result of a call to the function
in Figure 3.

The user can now install xmonad by running the following command1:

$ nix-env -f all-packages.nix -i -A xmonad

This builds the xmonad derivation and all its dependencies, and ensures that the xmonad

binary appears in the user’s PATH in a way described below. Derivations that have been
built previously are not built again. Other nix-env operations include -e to uninstall a
package, and --rollback to undo the previous nix-env action. There is also a command
to build a derivation without installing it:

1 Command invocations from the Unix shell are denoted in this article using the $ prefix.
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/nix/var/nix/profiles

alice 9

alice-14
alice-15 10

/nix/store

ias2837rija0...-user-env 11

bin

firefox
ghc

xmonad
8dpf3wcgkv1i...-xmonad-0.5

bin

xmonad
d71fzifksc23...-xmessage-1.0.2

bin
xmessage

nqapqr5cyk4k...-glibc-2.9

lib

ld-linux.so.2

Fig. 5. The Nix store, containing xmonad and some of its dependencies, and profiles

$ nix-build all-packages.nix -A xmonad

After a successful build, nix-build leaves a symlink ./result in the current directory that
points to the output of the xmonad derivation.

Nix is available at http://nixos.org/, along with the Nix Packages collection (Nixpkgs),
a large collection of Nix expressions for nearly 2500 packages.

The Nix store Build scripts only need to know that they should install the package in the
location specified by the environment variable out, which Nix computes before invoking
each package’s build script. So how does Nix store packages? It must store them in a
purely functional way: different instances of a package should not interfere, i.e., must not
overwrite each other.

Nix accomplishes this by storing packages as immutable elements in the Nix store, the
directory /nix/store, with a filename containing a cryptographic hash of all inputs used to
build the package. For instance, a particular instance of xmonad might be stored under

/nix/store/8dpf3wcgkv1ixghzjhljj9xbcd9k6z9r-xmonad-0.5/

where 8dpf3wcgkv1ixghzjhljj9xbcd9k6z9r is a base-32 representation of a 160-bit hash.
The inputs used to compute the hash are all attributes of the derivation (e.g., the attributes
at 2 in Figure 2, plus some default attributes added by the mkDerivation function). These
typically include the sources, the build commands, the compilers used by the build, library
dependencies, and so on. This is recursive: for instance, the sources of the compiler also
affect the hash.

Figure 5 shows part of a Nix store containing xmonad and some of its build-time and
runtime dependencies. The solid arrows denote the existence of references between files,
i.e., the fact that a file in the store contains the path of another store object. For instance, as
is required for dynamically linked ELF executables (TIS Committee, 1995), the xmonad
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executable contains the full path to the dynamic linker ld-linux.so.2 in the Glibc package.
Likewise, xmonad contains the full path to the xmessage program because we compiled it
into the executable (at point 5 in Figure 2).

Figure 5 also shows the notion of profiles, which enable atomic upgrades and rollbacks
and allow per-user package management. Names that are slanted denote symlinks, with
dotted arrows denoting symlink targets. The user has the directory /nix/var/nix/profiles/

user/bin in her path. When a package is installed through nix-env -i, a pseudo-package
called a user environment is automatically built that consists of symlinks to all installed
packages for that user. For instance, the user environment at 11 contains symlinks to
firefox, ghc and xmonad. A symlink /nix/var/nix/profiles/user -number 10 is created
to point to that user environment, and finally the symlink /nix/var/nix/profiles/user 9 is
atomically updated to point at that symlink. This makes the new set of packages appear in
an atomic action in the user’s PATH. Rollbacks are trivial: the command nix-env --rollback

simply flips the symlink back to its previous target (e.g. to /nix/var/nix/profiles/alice-14).

Advantages The purely functional approach has several advantages for package manage-
ment (Dolstra, 2006):

• Nix prevents undeclared build time dependencies through the use of the store: since
store paths are not in any default search paths, they will not be found.

• Nix detects runtime dependencies automatically by scanning for references, i.e., the
hash parts of filenames. E.g., if the output of a build that had the path /nix/store/-

8dpf3wcg...-xmonad-0.5 as a build-time dependency contains the string 8dpf3wcg...,
then we know that it has a potential runtime dependency on this instance of xmonad.
This is analogous to how the mark phase of a conservative garbage collector de-
tects pointers in languages that do not have a formally defined pointer graph struc-
ture (Boehm, 1993). Since the full dependency graph is known, we can reliably
deploy a package to another machine by copying its closure under the references
relation.

• Since packages are immutable, there is no DLL hell. For instance, if xmonad uses
glibc-2.9, and the installation of some other package causes glibc-2.10 to be in-
stalled, it will not break xmonad: it will continue to link against glibc-2.9.

• Knowledge of the runtime dependency graph allows unused packages to be garbage-
collected automatically. The roots of the collector are the profile symlinks in Fig-
ure 5.

• Since actions such as upgrading or downgrading to a different version are non-
destructive, the previous versions are not modified. Therefore, it is possible to roll
back to previous versions (unless the garbage collector has explicitly been invoked in
the meantime). Also, since upgrades and rollbacks are atomic, the user never sees a
half-updated package; the system is never in an inconsistent state at any point during
the upgrade.

• While the Nix model is in essence a source deployment model (since Nix expres-
sions describe how to build software from source), purity allows transparent binary
deployment as an optimisation. One can tell Nix that compressed archives of pre-
build store paths are available for download from a remote web server (such as the
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Nixpkgs distribution site). Then, when Nix needs to build some path p, it checks
whether a pre-built archive of p is available remotely. If so, it is downloaded instead
of building from source. Otherwise, it is built normally. Thus, binary deployment is
a simple optimisation of source deployment.

• A purely functional build language allows build-time variability in packages to be
expressed in a natural way, and allows abstracting over common build patterns.

• Having a declarative specification of the system pays off particularly when perform-
ing upgrades that invalidate a large number of packages. For instance, an upgrade of
GCC or the core C libraries might essentially require nearly the entire system to be
rebuilt. On a smaller, but not less annoying scale, every upgrade of GHC requires all
Haskell libraries to be rebuilt. Not only can these relations be expressed easily in Nix
– the upgrade path is also extremely painless, as the old versions remain usable in
parallel for as long as desired. The system will always be consistent and the different
versions do not interfere.

4 NixOS

In Section 3 we saw that the purely functional approach of the Nix package manager
solves many of the problems that plague “imperative” package management systems. We
have previously used Nix as a package manager under existing Linux distributions and
other operating systems, such as Mac OS X, FreeBSD and Windows to deploy software
alongside the “native” package managers of those systems. With NixOS, however, we have
developed a Linux distribution built entirely on Nix.

4.1 Going all the way

NixOS uses Nix not just for package management but also to build all other static parts of
the system. This extension follows naturally: while Nix derivations typically build whole
packages, they can just as easily build any file or directory tree so long as it can be built and
used in a pure way. For instance, most configuration files in /etc in a typical Unix system
do not change dynamically at runtime and can therefore be built by a derivation.

For example, the expression in Figure 6 generates a simple configuration file (sshd -

config) for the OpenSSH (Secure Shell) server program in the Nix store. That is, evaluat-
ing this expression will generate a file /nix/store/hash-sshd config). The helper function
pkgs.writeText returns a derivation that builds a single file in the Nix store with the speci-
fied name and contents. The contents in this case is a string containing an interpolation that
returns different file fragments depending on configuration options in the attribute set con-

fig specified by the user (discussed below). Namely, if the option services.sshd.forwardX11

is enabled, the SSH option X11Forwarding should be set to yes, and furthermore SSH
must be able to find the xauth program (to import X11 authentication credentials from the
remote machine). This means that this configuration file has an optional dependency on
the xauth package: depending on a user configuration option, the configuration file either
does or does not reference xauth. This kind of dependency between a configuration file
and a software package is generally not handled by conventional package managers, since
they do not deal with configuration files in the same formalism as packages: packages
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pkgs.writeText "sshd_config" ’’

UsePAM yes

${if config.services.sshd.forwardX11 then ’’

X11Forwarding yes

XAuthLocation ${pkgs.xorg.xauth}/bin/xauth

’’ else ’’

X11Forwarding no

’’}

’’

Fig. 6. Nix expression to build sshd config

can have dependencies, but configuration files cannot. In Nix, they are all derivations and
therefore treated in the same way. As a concrete consequence, the xauth package won’t be
garbage-collected if sshd config refers to it – an important constraint on the integrity of the
system.

When we build this expression, a possible result is:

UsePAM yes

X11Forwarding yes

XAuthLocation /nix/store/j1gcgw...-xauth-1.0.2/bin/xauth

Due to laziness, xauth will be built if and only if config.services.sshd.forwardX11 is
true. Thus, the laziness of the Nix expression language directly translates to laziness in
building packages. This is a crucial feature: while xauth is a tiny package, many NixOS
configuration options trigger huge dependencies. For instance, setting the option services.-

xserver.enable will cause a dependency on the X11 server (large), while services.xserver.-

desktopManager.kde4.enable will bring in the K Desktop Environment (very large).

4.2 Using NixOS

The rest of the system – the kernel, boot scripts, configuration files, and so on – are built in a
similar manner. In Section 5, we will discuss in detail the implementation and organisation
of the Nix expressions that constitute NixOS. First, however, we will give a high-level view
of the system from the user’s perspective, and along the way point out the advantages to
end-users and system administrators that flow from the purely functional approach.

In an installed NixOS system, the Nix expressions that constitute NixOS and Nixpkgs
reside in /etc/nixos/nixos and /etc/nixos/nixpkgs, respectively. There is a single top-
level expression, /etc/nixos/nixos/default.nix containing an attribute system that, when
evaluated, builds the entire NixOS system.

Reconfiguring The user specifies the desired configuration of the system in a Nix ex-
pression, /etc/nixos/configuration.nix, that contains a nested attribute set specifying all
configuration pertaining to the user’s system. This file is imported by the NixOS expres-
sions and affects the resulting derivations. Figure 7 shows an example configuration file. It
defines a simple but typical workstation. It specifies that we want to run the SSH daemon
to allow remote logins 18 , and that it should support forwarding of X11 connections 19 .
As we saw in Figure 6, the value of attributes such as services.sshd.forwardX11 influences
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{ config, pkgs, ... }: 12

{

boot.loader.grub.device = "/dev/sda"; 13

boot.kernelModules = [ "fuse" "kvm-intel" ]; 14

fileSystems = 15

[ { mountPoint = "/";

device = "/dev/disk/by-label/nixos";

}

{ mountPoint = "/home";

device = "/dev/disk/by-label/home";

}

];

swapDevices = [ { device = "/dev/disk/by-label/swap"; } ]; 16

environment.systemPackages = [ pkgs.firefox ]; 17

services.sshd.enable = true; 18

services.sshd.forwardX11 = true; 19

services.xserver.enable = true; 20

services.xserver.videoDriver = "nvidia";

services.xserver.desktopManager.kde4.enable = true;

}

Fig. 7. /etc/nixos/configuration.nix: NixOS configuration specification

the generation of configuration files such as sshd config. The configuration also specifies
the filesystems to be mounted 15 ; the swap device 16 ; the disk on which the GRUB
boot loader (see Section 5.2) is to be installed 13 ; that we need certain Linux kernel
modules that are not loaded by default, such as the kvm-intel module to support hardware
virtualisation 14 ; that Mozilla Firefox should be built and made available to users 17 ; and
that we want a graphical environment, namely the KDE desktop environment 20 .

(The reader may notice that configuration.nix is a function 12 . This is mostly to con-
veniently pass the Nix Packages collection, allowing the user to refer to packages in the
collection, such as pkgs.firefox. In Section 5 we shall see that configuration.nix is actually
a NixOS module, and as such follows the calling convention for modules.)

The user can realise changes to configuration.nix by running this command:

$ nixos-rebuild switch

This builds the system attribute of the top-level NixOS expression, installs it in the pro-
file /nix/var/nix/profiles/system, and then runs its activation script. As we shall see
in Section 5, the activation script is a shell script built as part of the system derivation
that takes care of the “imperative” aspects of actually switching to the new configura-
tion, such as restarting system services. For instance, if the user changed the value of
services.sshd.forwardX11, then the SSH daemon must be restarted to make it use the new
sshd config file.
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A variant command, nixos-rebuild boot, also builds the new configuration, but does not
activate it until the machine is next rebooted.

Upgrading The same nixos-rebuild mechanism is also used to upgrade the system. NixOS
is currently upgraded simply by updating the Nix expressions in /etc/nixos from the Nix
Subversion repository, i.e. by doing svn up /etc/nixos/*, and then running nixos-rebuild.

A crucial advantage of NixOS is that reconfiguring or upgrading the system is atomic (or
transactional), apart from the execution of the activation script. That is, during the build
phase of nixos-rebuild, the currently active system configuration is in no way affected: none
of the files of the current configuration in the Nix store are overwritten in place. The only
moment when an inconsistency can be observed is during the activation phase; for instance,
the system might temporarily run a PostgreSQL database server from the old configuration
and an Apache web server from the new configuration, which can cause a problem. Even
so, since the switch to the new configuration in the profile /nix/var/nix/profiles/system is
atomic (as we saw in Section 3), after a system crash or reset, the system will start either
all of the old configuration or all of the new configuration. That is, nixos-rebuild boot is
entirely atomic, while nixos-rebuild switch has slightly weaker semantics.

Rollbacks The profile /nix/var/nix/profiles/system (see Section 3) is used to enable
rollbacks to previous configurations. One of the great strengths of NixOS is that upgrades
are not destructive: the previous system configurations are still available in the Nix store.
For example, to undo the result of a previous nixos-rebuild switch action, we simply do

$ nixos-rebuild --rollback switch

This command runs nix-env –rollback to flip the /nix/var/nix/profiles/system symlink
from the new configuration back to the previous configuration, and then runs the activation
script of the previous – now current – configuration.

The system profile is also used to generate the boot menu of the GRUB boot loader. Each
non-garbage-collected configuration is made available as a menu entry (see Figure 8). This
enables another way to roll back to previous configurations: the user can recover trivially
from bad upgrades (such as those that render the system unbootable) simply by selecting
an older configuration in the boot menu.

Without user action, old configurations are kept indefinitely. If disk space becomes a
problem, it is possible to get rid of the old configurations:

$ nix-env -p /nix/var/nix/profiles/system --delete-generations old

which deletes all symlinks to configurations other than the current one. The user can then
run Nix’s garbage collector (nix-store --gc). This deletes all paths in the Nix store not
reachable (under the runtime dependency relation) from one of the garbage collector roots
in /nix/var/nix/profiles.

Testing new configurations The fact that configuration changes are non-destructive makes
testing such changes a lot less threatening. The command nixos-rebuild test builds and
activates a new configuration, but does not install it in the system profile or update the
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Fig. 8. The GRUB boot menu for a NixOS machine

GRUB boot menu. Thus, rebooting or resetting the system will automatically cause a
rollback to the current configuration in the system profile.

It is also possible to simply build the new configuration without activating it using the
command nixos-rebuild build. This is often useful during development. Indeed, as Nix’s
security model allows any user to securely perform build actions in the Nix store, this
command needs no root privileges.

A final, very attractive method to test configuration changes before committing to them
in production use is the command nixos-rebuild build-vm. This command uses a different
top-level derivation than the system attribute to build a virtual machine that runs the con-
figuration specified in configuration.nix. It leaves a symlink result in the current directory
pointing at a script that starts the virtual machine. Thus, the virtual machine can be started
by running ./result/bin/run-nixos-vm. This pop up a window showing the display of the
virtual machine. The configuration in the virtual machine is exactly the same as what we
would get on the host machine if we were to run nixos-rebuild switch, except that the VM
does not share the filesystems of the host, starting instead with an initially empty virtual
disk. The fact that we can so easily reproduce a system’s configuration on either a virtual
machine or a real machine is a direct consequence of the purely functional approach. As
we shall see in Section 5.3, the generation of these virtual machines is highly time and
space-efficient, making it very easy for users to test potentially dangerous upgrades.

Installation To newly install NixOS on a machine involves the following steps. To prepare
for the installation, the user boots the system from the NixOS installation CD, partitions the
target disk, creates a root filesystem for NixOS and mounts it on /mnt. The user must then
declaratively specify the desired configuration of the system in /mnt/etc/nixos/configu-
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ration.nix (using a text editor). The actual installation is initiated by running the command
nixos-install, which creates a Nix store in /mnt/nix, copies a small bootstrap environment
to that Nix store, performs a chroot operation (Stevens & Rago, 2005) to /mnt, runs nixos-

rebuild boot, and finally installs the GRUB bootloader to make the system bootable.
Obviously, tasks such as manually creating filesystems or writing a NixOS configuration

expression are not for atechnical computer users. However, there is no reason why this
installation process cannot be hidden behind a convenient (graphical) installer. The same
applies to the reconfiguration of an installed system: the manipulation of configuration.nix

and running of nixos-rebuild can be used as the back-end technology of a user-friendly
configuration tool.

5 Implementation

In this section, we describe the implementation of NixOS in greater detail. In particular,
we show how NixOS decomposes a Linux system into interrelated modules and options
that together compute the top-level derivation that builds the entire operating system.

5.1 NixOS modules

We have seen in the previous sections that Nix can build software packages from purely
functional specifications, and that we can apply the same approach to building the other
static parts of a Linux system, such as configuration files and boot scripts. NixOS thus
consists of a large set of Nix expressions that build the various parts constituting a Linux
system: static configuration files, boot scripts, and so on. These build upon the software
packages already provided by Nixpkgs. Even so, there are hundreds of derivations involved
in building a usable Linux installation. To make building the system manageable and
extensible, the Nix expressions are organised into NixOS modules. The essential feature
of NixOS modules is that they allow separation of concerns: each module defines a single,
“logical” part of the system (e.g., some system service, support for a certain kind of
hardware device, or an aspect such as the system path), even though its implementation
might cross-cut many “physical” parts (e.g., the derivations that build the boot scripts).

The goal of NixOS modules is to define the full system configuration: a nested attribute
set named config whose members (called options) specify various aspects of what the
system should do. These include end-user configuration items such as the options services.-

sshd.enable or fileSystems in Figure 7, but also, crucially, values that are computed from
the values of other options. This ultimately results in the option system.build.toplevel,
whose value is a derivation that builds the entire system through its dependencies.

Example Figure 9 shows the NixOS module that defines the OpenSSH daemon system
service. A NixOS module defines a nested attribute set config 22 containing option defini-
tions, that is, values of options. (The expression mkIf b as essentially evaluates to as if b

is true, and the empty attribute set otherwise. We will return to this in Section 6.3.) These
option definitions can be used by other modules. For instance, the sshd module uses (among
others) the option services.sshd.enable 23 , and defines the options users.extraUsers, jobs

and networking.firewall.allowedTCPPorts, which are used by other modules. For instance,
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{ config, pkgs, ... }: with pkgs.lib;

{

options 21 = {

services.sshd.enable = mkOption {

default = false;

description = "Whether to enable the Secure Shell daemon.";

};

services.sshd.forwardX11 = mkOption {

default = true;

description = "Whether to allow X11 connections to be forwarded.";

};

};

config 22 = mkIf config.services.sshd.enable 23 {

users.extraUsers = singleton

{ name = "sshd"; 24

uid = 2;

description = "SSH privilege separation user";

home = "/var/empty";

};

jobs.sshd = 25

{ description = "OpenSSH server";

startOn = "started network-interfaces";

preStart =

’’

mkdir -m 0755 -p /etc/ssh

if ! test -f /etc/ssh/ssh_host_dsa_key; then

${pkgs.openssh}/bin/ssh-keygen ...

fi

’’;

daemonType = "fork";

exec =

let sshdConfig = pkgs.writeText "sshd_config" (elided; see Figure 6);
in "${pkgs.openssh}/sbin/sshd -D ... -f ${sshdConfig} 26 ";

};

networking.firewall.allowedTCPPorts = [ 22 ];

};

}

Fig. 9. sshd.nix: NixOS module for the OpenSSH server daemon
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the firewall module uses the latter value in the definition of the derivation that produces the
firewall setup script. Thus, definitions across many modules contribute to the derivation
that generates the firewall setup script2.

Each option must be declared in some module before it can be defined by others.
Modules declare options in their options attribute, along with possible default values,
documentation and other meta-information. Thus, the sshd module at 21 declares the
options services.sshd.enable and services.sshd.forwardX11.

The most important option defined by the sshd module is jobs, which specifies declara-
tively how the service is to be started. The option jobs is used in another module to generate
concrete configuration files for Upstart (http://upstart.ubuntu.com/), the system “init”
process responsible for starting and monitoring system services. For instance, the sshd

module defines a job named sshd 25 , with some shell code to be run before the job is
started (preStart) and the actual command to start the service (exec).

To support the ability to upgrade and roll back cleanly, NixOS services must be self-
initialising and idempotent, as the sshd service illustrates. At startup, it creates the environ-
ment needed by the sshd daemon, such as the server host key /etc/ssh/ssh host dsa key.
This removes the need for post-install scripts used in other package managers (Cosmo
et al., 2008) and allows switching between configurations.

Computing the system configuration The general structure of a NixOS module is as
follows:

{ config, pkgs, ... }:

{ options = { nested attribute set of option declarations using mkOption };

config = { nested attribute set of option definitions };

}

That is, a module is a function that takes the full system configuration in the argument
config and, for convenience, the Nix Packages collection in pkgs; and returns a nested
set of option declarations in options and a nested set of option definitions in config. (The
configuration in Figure 7 uses an abbreviated module style for modules that define but do
not declare options.)

The config attribute sets returned by each module collectively define the full system
configuration, which is computed by merging them together. Multiple definitions of an
option are combined using that option’s merge function. Each option declaration can define
a specific merge function, which has a default based on the type of the option. For instance,
lists are by default concatenated: if in addition to the sshd module, some other NixOS
module has a configuration value

networking.firewall.allowedTCPPorts = [ 80 ];

then the value of this option in the final system configuration will be [ 22 80 ] or [ 80 22 ],
depending on the module order.

2 Prior to the development of NixOS’s module system, the Nix expression defining the firewall
derivation had to use the option services.sshd.enable to decide whether to include port 22. This
hurt extensibility and violated the principle of separation of concerns.
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The full configuration resulting from the merge is passed as an input back into each
module through the config function argument3. This allows modules to refer to values
defined in other modules. Note that while the computation of the full system configuration
is circular, thanks to laziness there is no problem as long as no individual options have a
circular dependency on each other.

5.2 Composing a Linux system

As we saw, modules such as sshd.nix map high-level options such as services.sshd.enable

to lower-level implementation options such as jobs. However, these are still far removed
from actual Nix derivations that allow us to build a system. (For instance, the sshd mod-
ule itself specifies no derivations other than the call to pkgs.writeText to generate the
sshd config file in the Nix store.) It is up to other modules to take options such as jobs

and map them onto still lower-level options, until we end up with the option system.build.-

toplevel whose value builds the entire system.
To see how we get from modules such as sshd to a running system, it is necessary

to understand the major parts of a Linux system and their interdependencies. Figure 10
shows the dependency graph of a small subset of the derivations that build NixOS. The
top-level derivation is the option system.build.toplevel, the evaluation of which causes
the entire system to be built – hundreds of derivations that collectively build a NixOS
operating system instance. Each arrow a → b means that the output of derivation a is
an input to derivation b. Italic nodes denote derivations that build configuration files;
bold nodes build Upstart jobs; dotted nodes are scripts; dashed nodes are various helper
derivations that compose logical parts of the system; and all other nodes are software
packages. However, the distinction between different node types is entirely conceptual.
As far as Nix is concerned, all nodes are derivations: pure, atomic build actions.

To illustrate the flow of values from high-level modules such as sshd to the final sys-

tem.build.toplevel option, we will discuss the most important parts of the system in more
detail.

Upstart jobs A running system consists primarily of a set of services, such as the X server,
the DHCP client, the SSH daemon, the Apache webserver, and many more. On NixOS,
these are started and monitored by Upstart, which provides the init process that starts all
other processes. Upstart reads specifications of system “jobs” from /etc/init and runs the
commands for each job when appropriate. Jobs can have dependencies on each other, e.g.,
the SSH daemon should be started after the job that initialises networking has succeeded.

As we saw, NixOS modules define system jobs through the jobs option (e.g. 25 in
Figure 9). The module upstart.nix maps these to derivations that build Upstart job files,
such as sshd or xserver in the graph. Note that the jobs option abstracts over the concrete

3 Note that there are two identifiers named config: one, the function argument config, is the final
system configuration, while the other, the result attribute config, is this module’s contribution to
the final configuration. Because the resulting attribute set is not recursive (using rec), references
to config such as config.services.sshd.enable at 23 in Figure 9 refer to the final system
configuration.
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Fig. 10. A small part of the dependency graph of the derivations that build NixOS

# Upstart job ‘sshd’. This is a generated file. Do not edit.

description "OpenSSH server"

start on started network-interfaces

start script

mkdir -m 0755 -p /etc/ssh

if ! test -f /etc/ssh/ssh_host_dsa_key; then

/nix/store/giiav2gdivfi...-openssh-5.2p1/bin/ssh-keygen ...

fi

end script

exec /nix/store/giiav2gdivfi...-openssh-5.2p1/sbin/sshd -D ... \

-f /nix/store/cs9fh614q8g0...-sshd_config 27

expect fork

respawn

Fig. 11. /nix/store/qjyn954j5jab...-upstart-sshd/etc/init/sshd.conf:
Generated Upstart job for the OpenSSH server daemon

Upstart syntax. This allows us to switch to a different “init” system, or to build test scripts
for system services to allow them to be run outside of Upstart.

Figure 11 shows the output of the generated Upstart job for sshd. The path to the sshd

configuration file (built by the derivation in Figure 6) is substituted in the Upstart job
at 27 as a result of the string interpolation at 26 . This means that the Upstart job has a
runtime dependency on the sshd configuration file, discovered by scanning for hashes. As
a consequence, the latter will not be garbage collected as long as the former is not garbage.
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Furthermore, it means that the sshd service does not need a “global” /etc/ssh/sshd con-

fig, in contrast to conventional Linux distributions. While this is not a big deal for the sshd

service, it is very important for other services: for instance, it makes it easy to run multiple
web servers side-by-side, such as production and test instances, simply by instantiating the
appropriate function multiple times with different arguments. The use of “global variables”
such as /etc/ssh/sshd config would preclude this.

Cross-cutting configuration files By contrast, some files are still needed in /etc, mostly
because they are “cross-cutting” configuration files that cannot be feasibly passed as build-
time dependencies to every derivation. Some constitute mutable state that is not dealt with
in the functional model at all, such as the system password file /etc/passwd or the DNS
configuration file /etc/resolv.conf, which must be modified at runtime by the DHCP client.
However, others are static (i.e., only change as a result of explicit reconfigurations) but
still cross-cutting, such as the static host name resolution list in /etc/hosts, the list of
well-known TCP and UDP ports in /etc/services, or the configuration files of the PAM
authentication system in /etc/pam.d/. These are built by Nix expressions, stored in the
Nix store and symlinked from /etc in the activation script (described below).

Modules can define static files that should appear in /etc through the option environ-

ment.etc. This is a list of attribute sets specifying files in the Nix store along with the in-
tended locations in /etc. The etc derivation in Figure 10 combines the files in environment.-

etc into a tree of symlinks. Later, the activation script copies these symlinks into /etc. For
instance, the option definition

environment.etc =

[ { source = pkgs.writeText "hosts" "127.0.0.1 localhost";

target = "hosts";

}

];

causes the activation script to create a symlink /etc/hosts to a file in the Nix store (say,
/nix/store/04vi02p4k8sp...-hosts) containing the line 127.0.0.1 localhost.

Note that the use of “global” files such as those in /etc dilutes the purely functional
approach, as the values of the symlinks in /etc are stateful. We discuss the extent of this
problem in Section 6.2.

System path Modules can define packages that should appear in the search path of all
users through the option environment.systemPackages. For instance, the definition en-

vironment.systemPackages = [ pkgs.firefox ] in Figure 7 makes the programs in the
Firefox package available to all users. The systemPath derivation in Figure 10 creates a
tree of symlinks to all files in the store paths in environment.systemPackages. This enables
declarative package management. By contrast, manual package management actions such
as nix-env -i (Section 3) are stateful and do not use a declarative specification to define the
set of installed packages.

Activation script Building a NixOS configuration is entirely pure; it only computes values
(files and directories) in the Nix store. But to activate a configuration requires actions to be
performed: system services must be started or stopped, user accounts for system services
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must be created, symlinks in /etc or state directories such as /var/log must be created, and
so on. This is done by the activation script, built by the derivation activateConfiguration.
As we saw in Section 4.2, the activation script is run by the command nixos-rebuild switch

after building the system configuration in the Nix store. Thus, it can perform stateful
initialisation that cannot be done as part of purely functional build actions. Modules can
specify script fragments to be included in the activation script by defining the option
system.activationScripts.

As an example, consider the creation of user accounts required by system services. For
instance, the SSH daemon requires the existence of an account named sshd for its privilege
separation feature. Modules can declaratively specify user accounts through the option
users.extraUsers. Thus, the sshd.nix module in Figure 9 defines at point 24 that an account
named sshd must exist with user ID 2 and home directory /var/empty. This option is
implemented in another module (users-groups.nix) by defining a script fragment in the
option system.activationScripts that makes the necessary calls to shell commands such as
useradd to idempotently create or update the required accounts.

Kernel The Linux kernel consists of the kernel proper (the node kernel in Figure 10) along
with external kernel modules – drivers and other kernel extensions in the Linux model –
such as the NVIDIA graphics drivers (nvidiaDrivers). These are part of Nixpkgs. A very
nice consequence of the purely functional approach is that an upgrade of the kernel (i.e., a
change to the Nix expression that builds the kernel) will trigger a rebuild of all dependent
external kernel modules. This is in contrast to many other Linux distributions, where a com-
mon upgrade problem is that the user upgrades the kernel and then discovers that the X11
windowing system will not start anymore because the NVIDIA drivers were not rebuilt.
This is not possible here, because system upgrades are done exclusively by rebuilding the
system.build.toplevel derivation; therefore, all its dependencies must build successfully.
(Of course the external modules might not be compatible with the new kernel, but such a
problem usually manifests itself at build time.) This illustrates that the declarative model of
NixOS ensures that the running system is consistent with the specification of the intended
configuration.

The small wrapper component modulesTree is an example of how we circumvent the
impure models of various tools and applications. The command to load Linux kernel mod-
ules, modprobe, expects all modules to live in a single directory tree (/lib/modules/kernel-

version on conventional Linux distributions). Thus, modules from various packages are ex-
pected to be installed in an existing directory, which is therefore stateful. The modulesTree

wrapper allows the modprobe command to work in a purely functional discipline: it com-
bines (through symlinks) the kernel modules from the kernel package with those from the
external module packages in a single directory tree, which is then used by modprobe.

Boot scripts and initial ramdisk NixOS, as most Linux distributions, has the following
boot process. The machine’s BIOS loads the boot loader GRUB (http://www.gnu.org/

software/grub/). GRUB then lets the user choose the operating system to boot, and in
the case of Linux, loads the kernel and the initial ramdisk, and starts the kernel. The
initial ramdisk is a compressed filesystem image whose sole purpose is to mount the root
filesystem of the running system. After loading the initial ramdisk, the kernel starts the
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stage 1 init script: the file /init in the initial ramdisk. It loads any drivers needed to mount
the root filesystem, runs the filesystem checker fsck if needed, mounts the root filesystem,
performs a chroot operation to make it the actual root of the filesystem hierarchy, and
passes control to the stage 2 init script. This script then performs remaining boot-time
initialisation (such as clearing the contents of the runtime state directory /var/run), runs
the activation script, and finally starts Upstart to boot and manage all system services.
These services include initialisation tasks such as bringing up the network, activating swap
devices, and mounting remaining filesystems.

The initial ramdisk is built by the derivation initrd. Because it must include all kernel
modules necessary to mount the root filesystem, it is not fixed, but depends on the hardware
configuration of the user. For instance, it must include kernel modules for the hardware
containing the filesystem (e.g. drivers for SCSI or USB) and the filesystem itself (e.g. the
ext3 filesystem).

Top-level derivation Finally, the value of the option system.build.toplevel is a derivation
that simply creates symlinks to its inputs, e.g. $out/kernel links to the kernel image,
$out/activate links to the activation script, and so on. These are sufficient to allow the
command nixos-rebuild switch to activate the newly built configuration (by running the
activation script) and to update the GRUB boot menu (using the symlinks to the kernel and
initial ramdisk).

Figure 12 shows a small part of the file hierarchy structure in the Nix store that results
from building a NixOS system configuration with services.sshd.enable and services.sshd.-

forwardX11 both enabled. As in Figure 5, italicised names and dotted arrows denote sym-
bolic links, while solid arrows denote other kinds of dependencies. For example, the output
of the top-level derivation (/nix/store/n38vx2n5l8q5...-system) has a symlink to the acti-
vation script, which in turn contains the path of the output of the etc derivation. Recall that
the etc derivation contains symlinks to the files that must be placed in /etc at activation
time. One of those is /etc/init/sshd.conf, which is the Upstart job for the sshd service. As
seen in Figure 11, this file contains build-time generated references to the openssh package
and the sshd config configuration file. Finally, the openssh package has a dependency on
the GNU C library (the glibc package). The Nix package manager keeps track of all these
dependencies. This means that none of the paths in Figure 12 will be garbage-collected as
long as they are reachable from any of the symlinks in /nix/var/nix/profiles.

The Nix expression /etc/nixos/nixos/default.nix contains a call to the function that
imports and evaluates all NixOS modules and merges the resulting config attribute sets
together to form the full system configuration. Thus, the following sequence of commands:

$ nix-build /etc/nixos/nixos -A config.system.build.toplevel

$ ./result/activate

builds the entire configuration (including all software dependencies, configuration files and
Upstart jobs), leaving a symlink result in the current directory; and then runs the activation
script.4 When switching to the new configuration, the activation script stops any Upstart

4 This sequence of commands is essentially what the user command nixos-rebuild test does; nixos-
rebuild switch in addition regenerates the GRUB boot menu.
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/nix/var/nix/profiles
system

system-41

system-42

/nix/store

n38vx2n5l8q5...-system

kernel

initrd
activate

7q1cp2y3qfbn...-activation-script

2bc239mvs617...-etc
etc/init/sshd.conf

etc/init/httpd.conf

etc/hosts

etc/services

qjyn954j5jab...-upstart-sshd

etc/init

sshd.conf (Upstart job)

cs9fh614q8g0...-sshd config

giiav2gdivfi...-openssh-5.2p1

bin

sshd
nqapqr5cyk4k...-glibc-2.9

lib

libc.so.6

Fig. 12. Outputs of derivations related to the OpenSSH server daemon, as well as the system profile

jobs that have disappeared in the new configuration, starts new jobs, restarts jobs that have
changed, and leaves all other jobs untouched. It can determine precisely which jobs have
changed by comparing the store paths of the Upstart job files: if they are different, then
by definition some input in the dependency graph of the job changed, and a restart may be
needed.

5.3 Building disk images and virtual machines

Normally, building a NixOS configuration entails evaluating the option system.build.-

toplevel, which allows the configuration to be installed in the system profile in /nix/-

var/nix/profiles, activated and booted from the GRUB boot menu. However, there are spe-
cialised modules that define other “top-level” options to build a system in rather different
ways. Notably, these are the generation of CD-ROM images containing NixOS, and the
generation of NixOS virtual machines.

ISO images For instance, the module installer/cd-dvd/iso-image.nix defines a derivation
option system.build.isoImage that runs the genisoimage command to generate an ISO-
9660 (CD-ROM) filesystem image containing the closure of the output of the derivation
system.build.toplevel (i.e., the usual top-level derivation), along with files such as the
GRUB boot loader to make the CD bootable. Thus, slightly simplified, one can run the
command
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$ nix-build /etc/nixos/nixos -A system.build.isoImage

to generate a NixOS CD-ROM image that can be burned onto a CD. This is a so-called
“live CD”: the NixOS system on the CD behaves like a normal installation except that the
filesystem is not persistent across reboots. A ramdisk stacked on top of the CD filesystem
using a union filesystem (Pendry & McKusick, 1995) is used to make the CD appear
writable.

This module is used to generate the NixOS installation CDs in a modular way. For
instance, there is a module installation-cd-graphical.nix that builds a large, full-featured
CD containing X11 and the KDE desktop environment. It does this by importing iso-

image.nix, and then defining options such as:

{ services.xserver.enable = true;

services.xserver.desktopManager.kde4.enable = true;

}

By contrast, the module installation-cd-minimal.nix specifies a small CD image without a
GUI and related features.

Cheap virtual machines The module virtualisation/qemu-vm.nix defines a derivation
option system.build.vm that produces a shell script that starts a virtual machine running the
given NixOS system configuration. This is used by the command nixos-rebuild build-vm

(Section 4.2) to allow users to safely test configurations in a VM. The VM is implemented
using QEMU/KVM (http://www.linux-kvm.org/), which has the ability to start a Linux
kernel directly from the host filesystem (i.e., without the need for a virtual disk image
containing that kernel). Essentially, the content of the start script is:

${pkgs.qemu_kvm}/bin/qemu-system-x86_64 -smb / \

-kernel ${config.boot.kernelPackages.kernel} \

-initrd ${config.system.build.initialRamdisk} \

-append "init=${config.system.build.bootStage2} ..."

The module also defines the fileSystems option as

[ { mountPoint = "/hostfs"; device = "//10.0.2.4/qemu";

fsType = "cifs"; }

{ mountPoint = "/nix/store"; device = "/hostfs/nix/store";

options = "bind"; }

]

to make the initial ramdisk mount the Nix store on the host machine through the CIFS
network filesystem. This is a feature provided by QEMU/KVM, which provides a virtual
Ethernet card to the guest. The option -smb / causes QEMU/KVM to automatically start
a CIFS server attached to IP address 10.0.2.4 in the virtual network.

The fact that the virtual machine shares the Nix store of the host makes the generation
of VMs very efficient: we do not have to generate a disk image containing the closure of
system.build.toplevel, which would typically be hundreds of megabytes large. As a result,
nixos-rebuild build-vm can build VMs for test purposes very quickly.
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Virtual machine images While the QEMU-based approach does not build virtual ma-
chine images, it is not hard to do so with the appropriate tools. For instance, NixOS
provides a module that builds a bootable disk image for Amazon’s Elastic Compute Cloud
(http://aws.amazon.com/ec2/). It defines a derivation option system.build.amazonImage

that creates and formats a disk image and fills it with the closure of the store path created
by system.build.toplevel. It also defines the network configuration necessary to make the
machine reachable from outside the cloud. Thus, we can take an arbitrary NixOS system
configuration module (e.g., the one in Figure 7) and combine it with the Amazon EC2
module to generate a cloud machine that implements the specified configuration.

6 Evaluation and discussion

In this section, we reflect upon the extent to which the purely functional model “works”,
i.e., can be used to implement a useful system, how pure Nix derivations actually are, and
what compromises to purity were necessary. We also discuss the security implications of
purity, the importance of laziness in the Nix expression language, and the type system of
the language.

6.1 Status

NixOS is not a proof-of-concept: it is in production use on a number of desktop and server
machines. Sources and ISO images of NixOS for i686 and x86 64 platforms are available at
http://nixos.org/. As of May 2010, the Nix Packages collection (on which NixOS builds)
contains Nix expressions for around 2481 packages. These range from basic components
such as the C library Glibc and the C compiler GCC to end-user applications such as
Firefox and OpenOffice.org. NixOS has system services for running X11 (including the
KDE desktop environment and parts of Gnome), Apache, PostgreSQL and many more.
NixOS is fairly unique among Linux distributions in that it allows non-root users to install
software, thanks in part to the purely functional approach, which enables some strong
security guarantees (Dolstra, 2005).

To provide some sense of the size of a typical configuration (a laptop running X11, KDE
and Apache, among other things5): the build graph rooted at the top-level system attribute
in /etc/nixos/nixos/default.nix consists of 1036 derivations (or 582 excluding fetchurl

derivations) and 167 miscellaneous source files. The closure of the output of the system

derivation (i.e., its runtime dependencies) consists of 487 store paths with a total size of
1991 MiB, on a filesystem with a 2 KiB block size. (To place this roughly in context, a
32-bit install of Windows 7 requires 16 GiB of disk space.) Thus more than half of the
derivations are build-time-only dependencies, such as source distributions, compilers and
parser generators. The evaluation of system imports 560 Nix expression files in the NixOS
and Nixpkgs trees, and takes 1.5 seconds of CPU time on an Intel Core 2 Duo 7700 running
32-bit NixOS.

5 Revision 21775 of the configuration at https://svn.nixos.org/repos/nix/configurations/trunk/
misc/eelco-dutibo.nix.
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6.2 Purity

The goal of NixOS was to create a Linux distribution built and configured in a purely
functional way. Thus build actions should be deterministic and therefore reproducible,
and there should be no “global variables” such as /bin that prevent multiple versions of
packages and services from existing side-by-side. There are several aspects to evaluating
the extent to which we reached those goals.

Software packages Nix has no /bin, /usr, /lib, /opt or other “stateful” directories con-
taining software packages, with a single exception: there is a symlink /bin/sh to an in-
stance of the Bash shell in the Nix store. This symlink is created by the activation script
and is needed because many shell scripts and commands refer directly to it; indeed, the C
library function system() has a hard-coded reference to /bin/sh. To our surprise, /bin/sh

is the only such compromise that we need in NixOS. Other hard-coded paths in packages
(e.g., references to /bin/rm or /usr/bin/perl) are much less common and can easily be
patched on a per-package basis. Such paths are uncommon in widely used software be-
cause they are not portable in any case (e.g., Perl is typically, but not always installed in
/usr/bin/perl). They are relatively more common in the Linux-specific packages that we
needed to add to Nixpkgs to build NixOS.

An interesting class of packages to support are binary-only packages, such as Adobe
Reader and many games. While Nix is primarily a source-based deployment system (with
sharing of pre-built binaries as a transparent optimisation, as discussed in Section 3),
binary packages can be supported easily: they just have a trivial build action that unpacks
the binary distribution to $out. However, such binaries do not work as-is under NixOS,
because ELF binaries (which Linux uses) contain a hard-coded path to the dynamic linker
used to load the binary (usually /lib/ld-linux.so.2 on the i386 platform), and expect to
find dependencies in /lib and /usr/lib. None of these exist on NixOS for purity reasons.
To support these programs, we developed a small utility, patchelf, that can change the
dynamic linker and RPATH (runtime library search path) fields embedded in executables.
Thus, the derivation that builds Adobe Reader uses patchelf to set the acroread program’s
dynamic linker to /nix/store/...-glibc-.../lib/ld-linux.so.2 and its RPATH to the store
paths of GTK+ and other required libraries.

Configuration data NixOS has far fewer configuration files in /etc than other Linux
distributions. This is because most configuration files concern only a single daemon, which
almost always has an option to specify the full path to the configuration file in the Nix store
directly (such as sshd -f ${sshdConfig} in Figure 9). What remains are cross-cutting con-
figuration files, which, as discussed in Section 4, are built purely but then symlinked from
/etc by the configuration’s activation script. The configuration mentioned in Section 6.1
has 88 such symlinks (including 37 Upstart jobs in /etc/init and 18 symlinks for services
of the PAM authentication framework).

Mutable state NixOS does not have any mechanism to deal directly with mutable state,
such as the contents of /var. These are managed by the activation script and the system
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services in a standard, stateful way. Of course, this is to be expected: the running of a
system (as opposed to the configuration) is inherently stateful.

Runtime dependencies In Nix, we generally try to fix runtime dependencies at build time.
This means that while a program may execute other programs or load dynamic libraries at
runtime, the paths to those dependencies are hard-coded into the program at build time. For
instance, for ELF executables, we set the RPATH in the executable such that it will find a
statically determined set of library dependencies at runtime, rather than using a dynamic
mechanism such as the LD LIBRARY PATH environment variable to look up libraries.
This is important, because the use of such dynamic mechanisms makes it harder to run
applications with conflicting dependencies at the same time (e.g., we might need Firefox
linked against GTK+ 2.8 and Thunderbird linked against GTK+ 2.10). It also enhances
determinism: a program will not suddenly behave differently on another system or under
another user account because environment variables happen to be different.

However, there is one case in NixOS and Nixpkgs of a library dependency that must be
overridable at runtime and cannot be bound statically: the implementation of the OpenGL
graphics library to be used at runtime (libGL.so), which is hardware-specific. We build
applications that need OpenGL against Mesa (an OpenGL implementation that provides a
software renderer), but add the path to the actual OpenGL implementation selected in the
user’s system configuration to the LD LIBRARY PATH environment variable.

Build actions The Nix model is that derivations are pure, that is, two builds of an identical
derivation should produce the same result in the Nix store. However, in contemporary oper-
ating systems, there is no way to actually enforce this model. Builders can use any impure
source of information to produce the output, such as the system time, data downloaded
from the network, or the current number of processes in the system as seen in /proc. It is
trivial to construct a contrived builder that does such things. But build processes generally
do not, and instead are fairly deterministic; impure influences such as the system time
generally do not affect the runtime behaviour of the package in question.

There are however frequent exceptions. First, many build processes are greatly affected
by environment variables, such as PATH or CFLAGS. Therefore we clear the environment
before starting a build (except for the attributes declared by the derivation, of course). We
set the HOME environment variable to a non-existent directory, because some derivations
(such as Qt) try to read settings from the user’s home directory.

Second, almost all packages look for dependencies in impure locations such as /usr/bin

and /usr/include. Indeed, the undeclared dependencies caused by this behaviour are what
motivated Nix in the first place: by storing packages in isolation from each other, we pre-
vent undeclared build-time dependencies. In seven years we haven’t had a single instance
of a package having an undeclared build-time dependency on another package in the Nix
store, or having a runtime dependency on another package in the Nix store not detected
by the reference scanner. (As with conservative garbage collectors, there is a possibility
that dependencies are not found if they are represented in a non-standard way, such as in a
UTF-16 encoding or as a result of compression. However, we have not encountered this in
practice.) However, with Nix under other Linux distributions or operating systems, there
have been numerous instances of packages affected by paths outside the Nix store. We
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prevent most of those impurities through a wrapper script around GCC and ld that ignores
or fails on paths outside of the store. However, this cannot prevent undeclared dependencies
such as direct calls to other programs, e.g., a Makefile running /usr/bin/yacc.

Since NixOS has no /bin, /usr and /lib, the effect of such impurities is greatly reduced.
However, even in NixOS such impurities can occur. For instance, we recently encountered
a problem with the build of the dbus package, which failed if /var/run/dbus did not exist.
Nix can optionally perform builds in a chroot-environment (Stevens & Rago, 2005) where
directories such as /var do not exist, but this is somewhat less portable.

As a final example of impurity, some packages try to install files under a different
location than $out. Nix causes such packages to fail deterministically by executing builders
under unprivileged UIDs that do not have write permission to other store paths than $out,
let alone paths such as /bin. These packages must then be patched to make them well-
behaved.

To ascertain how well these measures work in preventing impurities in NixOS, we
performed two builds of the Nixpkgs collection6 on two different NixOS machines. This
consisted of building 485 non-fetchurl derivations. The output consisted of 165927 files
and directories. Of these, there was only one file name that differed between the two builds,
namely in mono-1.1.4: a directory gac/IBM.Data.DB2/1.0.3008.37160 7c307b91aa13-

d208 versus 1.0.3008.40191 7c307b91aa13d208. The differing number is likely derived
from the system time.

We then compared the contents of each file. There were differences in 5059 files, or 3.4%
of all regular files. We inspected the nature of the differences: almost all were caused by
timestamps being encoded in files, such as in Unix object file archives or compiled Python
code. 1048 compiled Emacs Lisp files differed because the hostname of the build machines
were stored in the output. Filtering out these and other file types that are known to contain
timestamps, we were left with 644 files, or 0.4%. However, most of these differences
(mostly in executables and libraries) are likely to be due to timestamps as well (such as a
build process inserting the build time in a C string). This hypothesis is strongly supported
by the fact that of those, only 42 (or 0.03%) had different file sizes. None of these content
differences have ever caused an observable difference in behaviour.

Cost of purity The purely functional model of NixOS comes at a substantial cost in terms
of disk space usage. Since derivations never overwrite each other, we can end up with
many versions or variants of the same package in the Nix store. In particular, a change to a
package, no matter how trivial, causes a rebuild or redownload of all dependent packages.
The worst case is a change to a fundamental package such as Glibc, which triggers a
rebuild or redownload of the entire system. On the other hand, upgrades to derivations
near the “top” of the dependency graph tend to be cheap. This is exactly analogous to
purely functional data structures in a language such as Haskell (since the store is a purely
functional data structure): updating the first element of a list is cheap, while updating the
last element is expensive.

6 To be precise, the i686-linux derivations from build-for-release.nix in revision 11312 of https:
//svn.nixos.org/repos/nix/nixpkgs/branches/purity-test.
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As a result, even if we garbage collect after every upgrade, NixOS may require twice
the amount of disk space of a conventional system to perform an upgrade; e.g., almost 4
GiB for the configuration in Section 6.1, rather than 2 GiB. It is worth pointing out, how-
ever, that other systems have rollback facilities that are similarly expensive; for instance,
Windows restore points consume gigabytes of data in typical configurations.

Nix has a tool (nix-store --optimise) to optimise disk space usage by searching the store
for identical files and replacing them with hard links to a single copy. For instance, given a
rebuild of the configuration in Section 6.1 after changing a single character in a derivation
at the root of the dependency graph, this tool found that out of the 89150 files in the new
configuration, 77702 were identical to a file in the old configuration, leading to a savings
of 1139 MiB, or 57.3% of the total (on a filesystem with a 2 KiB block size).

Note that the proliferation of multiple versions of packages only happens between builds
of the system configuration; each such build itself generally contains only one version of
each dependency. Thus, after garbage-collecting all non-current configurations, we end
up with only one version of each package. (The only exception is if the configuration
explicitly specifies multiple versions or variants of a package.) On the other hand, user
environments created with nix-env typically contain many different versions of depen-
dencies, because these tend to accumulate over time – there is, after all, no reason to
update a package in a profile if it works properly. For instance, the main profile on the first
author’s laptop after around 2.5 years and 237 nix-env actions had a closure containing 714
store paths and 275 unique packages. Thus 429 paths were variants of other paths; e.g., 9
versions of libX11, 8 versions of GTK+, and 6 versions of Glibc. This proliferation can
be prevented by using the “declarative” style of package management through the option
environment.systemPackages (Section 5.2).

6.3 Laziness

The use of lazy evaluation for the Nix expression language was a conscious design deci-
sion. Here, we discuss how the use of laziness leads to advantages both in the specification
of individual derivations and in building the NixOS system configuration.

Laziness in derivations Evaluation of a derivation means performing a build action, and
build actions can be quite expensive: some packages require a significant amount of data
to be downloaded from the Internet, others take several hours to compile. It is therefore of
utmost importance that a package is only built if it is necessary.

The choice for lazy evaluation allows us to write Nix expressions in a convenient and
elegant style: Packages are described by Nix expressions and these Nix expressions can
freely be passed around in a Nix program – as long as we do not access the contents of
the package, no evaluation and thus no build will occur. For example, a derivation for a
package can check a Boolean parameter to determine whether to actually pass a certain
library to the build inputs or not. An example of such a design pattern is shown in Figure 6.

At the call site of a function, we can supply all potential dependencies without having
to worry that unneeded dependencies might be evaluated. For instance, the whole of the
Nix packages collection is essentially one attribute set where each attribute maps to one
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package contained in the collection (cf. Figure 4). It is very convenient that at this point,
we do not have to deal with the administration of what exactly will be needed where.

Another benefit is that we can easily store meta information with packages, such as
name, version number, homepage, license, description and maintainer. Without any extra
effort, we can access such meta-information without having to build the whole package.

Laziness in computing the system configuration Recall from Section 5.1 that the full
system configuration config, computed by combining the config attribute from each NixOS
module, is passed as an input to each module in the config function argument. That is, the
input of a module depends on its own output – a circular definition. This feature allows
modules to reflect on the full system configuration, using option definitions from other
modules regardless of where they are defined. Thanks to the laziness of the Nix expression
language, this kind of circularity is fine as long as there is no circularity between the
definitions of individual options.

However, circularity does lead to a problem: in some common cases, we are not lazy
enough. Recall that the sshd module (Figure 9) is optionally enabled or disabled through
the option services.sshd.enable. Naively, we might write the module as follows:

{ config, pkgs, ... } :

{ config =

if config.services.sshd.enable

then { users.extraUsers = ...; ... }

else { };

}

Unfortunately, this leads to an infinite recursion (detected by the Nix expression evaluator
through blackholing (Peyton Jones, 1992; Dolstra, 2008)). To evaluate the function argu-
ment config, we need to recursively merge each module’s config attribute, which therefore
need to be evaluated as well; but to evaluate the config attribute of the module above, we
need to evaluate the condition of the if, which requires us to evaluate the function argument
config, which is circular.

The solution is the function mkIf (used in Figure 9 at 23 ), which delays the evaluation
of the conditional by “pushing it down” to the individual option definitions. Essentially,
the mkIf transforms the attribute set into this:

{ users.extraUsers =

if config.services.sshd.enable then ... else ignore;

...

}

where the ellipses denote the original values of the option definitions, and ignore is a special
value that is filtered out when the definitions are merged.

6.4 Types

The Nix expression language is dynamically typed. In contrast to the choice of evaluation
strategy, the decision for dynamic typing was less conscious, and mainly motivated by
keeping the language design simple.
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The use of dynamic types has influenced the way Nix expressions are currently being
written. By now, there are quite a few library functions that depend on run-time type
analysis and meta-programming techniques, both of which are facilitated by the lack of
a static type system (and will also make adding such a system at a later stage harder):
The Nix expression language has built-in functions for run-time type testing, and offers
functions that can check for the presence of a particular attribute in an attribute set, or
even turn an attribute set into a list of string-value pairs. One significant example where
meta-programming is used is the NixOS module system: As explained in Section 5.1, all
modules are composed in an intricate way that makes use of reflection.

A benefit of dynamic types is that it becomes somewhat easier to support migration
between library interfaces. If a library function changes behaviour, but a user-developed
Nix function still makes use of an outdated interface, we can dynamically check for it,
issue a deprecation warning, and then convert it automatically to the new interface, all
without special built-in language support.

However, we are also investigating how to extend the Nix expression language with a
type system. In the long term, we do not just want to check as much as possible of the
current structural type system statically, but also introduce user-defined datatypes, such
that for instance all variants of a single package such as GHC have the same type, and one
cannot inadvertently pass a different package as a parameter where really GHC is expected.
Currently, such a package fails at build time. Furthermore, we believe that a suitable type
system can be an asset to end users, as (graphical) user interfaces for system configuration
management could be derived from the types.

6.5 Security issues

Some Unix packages need to install programs with setuid or setgid permissions. These
cause a program to be executed under the identity of the owner of the program rather than
under the identity of the caller (Stevens & Rago, 2005). For instance, the passwd program
must be installed setuid root to allow it to modify the system password file. However, such
binaries cannot be allowed in the Nix store due to the security implications of the purely
functional model: if a security bug is discovered in a setuid binary such as passwd (e.g.,
a privilege escalation bug), it must be overwritten or deleted, since otherwise the security
hole remains in the system. This is in contrast to security bugs in normal programs, which
we merely need to refrain from using; their presence in the store is not a problem. However,
the purely functional model disallows overwriting of files, and only deletes files if they can
be safely garbage-collected. Fortunately, because Nix executes derivations under a non-
privileged user account, they cannot install setuid binaries.

Since programs in the Nix store cannot have these permissions, we push the issue of
supporting setuid programs to activation time, where we are allowed to have stateful-
ness: we let the activation script create trivial wrapper programs with the desired permis-
sions in /var/setuid-wrappers that call the wrapped program. For instance, /var/setuid-

wrappers/passwd is a setuid root wrapper that calls the real passwd program, e.g. /nix/-

store/sbci75s3c7im...-pwdutils-3.1.3/bin/passwd. Since only the root user has sufficient
permission to run the activation script succesfully, unprivileged users cannot use this mech-
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anism to create wrappers: they can build a NixOS configuration (e.g. using nixos-rebuild

build), but cannot activate it.
A NixOS option defines the programs for which wrappers must be created. This has the

security advantage of making explicit the set of potentially dangerous, privileged programs.
The configuration described in Section 6.1 creates 16 setuid wrappers.

7 Related work

This article is about purely functional configuration management of operating systems. It
is not about implementing an operating system in a (purely) functional language. Hallgren
et al. (2005) did the latter in Haskell in their operating system House, and a number of
systems have been implemented in impure functional languages.

DeTreville (2005) proposed making system configuration declarative. NixOS is a con-
crete, large-scale realisation of that notion. Tucker and Krishnamurthi (2001) proposed
modelling packages and system configurations using the unit system of MzScheme, al-
lowing functional abstraction, explicit composition and multiple instantiations of packages
and system services. Beshers et al. (2007) discuss a Linux distribution that not only uses
functional programming to implement various system administration tools, but applies a
functional mindset to those tasks. Notably, the autobuilder tool builds binary packages for
the Linspire Linux distribution in a purely functional way: from a set of source packages
it builds immutable binary packages. However, this is not used for the actual package
management on end-user systems, nor does it extend to building complete system config-
urations.

The system configuration management literature sometimes distinguishes between con-
figuration management tools with convergent and with congruent behaviour (Traugott &
Brown, 2002). In a convergent model, the tool tends to make the system configuration
converge towards a desired state as a result of iterative changes to a system specification. In
a congruent model, the tool guarantees that the actual configuration of the system matches
the specification of the desired configuration. Disregarding mutable state, NixOS has a
congruent model: after a nixos-rebuild, the system is in a state determined by the NixOS
system configuration specification, and independent from the previous state of the system.

An example of the convergent approach is Cfengine (Burgess, 1995), a well-known sys-
tem configuration management tool. Cfengine updates machines on the basis of a declara-
tive specification of actions (such as “a machine of class X must have the following line in
/etc/hosts; if it doesn’t, add it”). Cfengine is convergent in that the desired state is implicit:
when faced with an actual system configuration that differs from the desired configuration,
the system administrator updates the Cfengine configuration with actions that attempt
to modify the state of the system towards the desired state. This is an iterative process.
However, these actions transform a possibly unknown state of the system, and can therefore
have all the problems of statefulness. Furthermore, since actions are specified with respect
to fixed configuration file locations (e.g., /etc/sendmail.mc), it is not straightforward to
enable multiple configurations to coexist in the same system.

ISconf (Traugott & Brown, 2002) is an example of a tool that aims at having a congruent
model. It attempts to achieve congruence by keeping a list of all actions that have been per-
formed on a system. This allows the configuration to be reproduced on an empty machine
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by replaying the history of actions. However, maintaining this history may be impractical;
e.g., we need to keep around all old versions of actions because they may have contributed
to the current state of the system in the past (Kanies, 2003). NixOS does not have this
problem because it does not rely on the previous state.

The Nix expression language is essentially a functional “Make” (Feldman, 1979). In-
deed, Make is used in the FreeBSD Ports collection (FreeBSD Project, 2009) as a high-
level driver for package management. However, without functions, it lacks a clean mech-
anism to deal with variability in packages; and because Make actions destructively update
files, it has all of the problems of statefulness discussed in Section 2. The FreeBSD Ports
collection does not use Make to handle non-package parts of the system, such as configu-
ration files in /etc. On the other hand, Vesta (Heydon et al., 2001), an integrated configura-
tion management system that provides revision control as well as build management, has a
purely functional build language – the System Description Language (Heydon et al., 2000).
Thus it is quite similar to Nix, and could be used to support purely functional deployment
(but to our knowledge, has not been applied to this domain). Similarly, Odin (Clemm, 1986;
Clemm, 1995) has a functional language to describe build actions (queries). Indeed, a reim-
plementation of Odin’s semantics as an embedded domain-specific language in Haskell is
presented by Sloane (2002).

8 Conclusion

We demonstrated that a realistic operating system can be built and configured in a declar-
ative, purely functional way with very few compromises to purity. NixOS also forms a
compelling demonstration of the applicability of lazy, purely functional programming in
an unconventional application domain.

Future work Given that we can specify and build configurations for single machines
declaratively, the logical next step is to extend our approach to sets of machines, so that
the configuration of a network of machines can be specified centrally. This will allow
interdependencies between machines (such as a database server on one machine and a
front-end webserver on another) to be expressed elegantly. Furthermore, not all machines
need to be physical machines: given a declarative specification, it is possible to automati-
cally instantiate virtual machines that implement the specification. Apart from easing the
deployment of virtual machines, this will enable simulation and debugging of distributed
deployments.

Another issue concerns management of mutable state, which is currently not supported
except in an ad hoc manner through activation scripts. For instance, if an upgrade requires
a database schema to be updated, then a subsequent rollback requires the schema change
to be undone. This is clearly a difficult problem. We may also wish to be able to obtain the
closure of not only the static parts of a running system, but also its mutable parts, e.g. in
order to migrate it to another machine. A partial solution may be to keep state in a mutable
variant of the Nix store, say, /nix/state (den Breejen, 2008).

Finally, as noted in Section 6.2, our model assumes that builds are pure, but current
operating systems cannot enforce this. An interesting idea would be to add support for
truly pure builds, e.g., kernel modifications to support the notion of a “pure process”: one
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that is guaranteed to give the same output for some set of inputs. This would mean, for
instance, that the time() system call must return a fake value, network access is blocked,
files outside of a specified set should be invisible and scheduling must be deterministic.
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