
Integrating Software Construction and Software
Deployment

Eelco Dolstra

Utrecht University, P.O. Box 80089,
3508 TB Utrecht, The Netherlands

eelco@cs.uu.nl

Abstract. Classically, software deployment is a process consisting of
building the software, packaging it for distribution, and installing it at
the target site. This approach has two problems. First, a package must
be annotated with dependency information and other meta-data. This
to some extent overlaps with component dependencies used in the build
process. Second, the same source system can often be built into an of-
ten very large number of variants. The distributor must decide which
element(s) of the variant space will be packaged, reducing the flexibil-
ity for the receiver of the package. In this paper we show how building
and deployment can be integrated into a single formalism. We describe a
build manager called Maak that can handle deployment through a suffi-
ciently general module system. Through the sharing of generated files, a
source distribution transparently turns into a binary distribution, remov-
ing the dichotomy between these two modes of deployment. In addition,
the creation and deployment of variants becomes easy through the use
of a simple functional language as the build formalism.

1 Introduction

Current SCM systems treat the building of software and the deployment of
software as separate, orthogonal steps in the software lifecycle. Controlling the
former is the domain of tools such as Make [1], while the latter is handled by,
e.g., the RedHat Package Manager [2]. In fact, they are not orthogonal. In this
paper we show how building and deployment can be integrated in an elegant
way.

We shall first look at the problems inherent in the current approach to build-
ing and deployment.

Component dependencies Separating the building and deployment steps leads
to a discontinuity in the formalisms used to express component dependencies.
In a build manager it is necessary to express the dependencies between source
components; in a package manager it is necessary to express the dependencies
between binary components.

An example may be helpful. Consider the following Makefile for a small
system that consists of a support library and a main program.

program: main.o libsupport.a
cc -o program main.o libsupport.a

libsupport.a: foo.o bar.o
...

The Makefile properly expresses the relationships between the components; e.g.,
if any of the sources of the library changes, the program will be rebuilt as well.

On the other hand, if we were to take out the support library and move it
into a separate package — so that it could be deployed independently — we end
up with two Makefiles that do not provide a sufficient amount of dependency
information, e.g., for the library package:

libsupport.a: foo.o bar.o
...

and for the program package:

program: main.o
cc -o program main.o -lsupport

Note that the dependency of the program component on the library com-
ponent is no longer explicit at the Makefile level. We now have to express the
dependency at the package level, i.e., we have to express that the program pack-
age has a build-time or run-time dependency on the library package, in the case
of static or dynamic linking, respectively. That is, splitting one package into
several lifts dependencies to a higher level, making them invisible to the lower
level.

Source vs. Binary Distribution Another issue is the dichotomy between source
and binary distributions. In an open-source environment software is provided as
source packages and sometimes as binary packages. The packaging and instal-
lation mechanisms for these are quite different. This is unfortunate; after all, a
binary distribution can be considered conceptually to be a source distribution
that has been partially evaluated with respect to a target platform using, e.g., a
compiler.

Variability Most software systems exhibit some amount of variability, that is,
several variants can be instantiated from the same source system. Typical vari-
ation points are choosing between exclusive alternatives, whether to include op-
tional features, and so on.

In open-source systems in particular there tend to be many build-time vari-
ation points in order to make the system buildable in a wide variety of envi-
ronments that may or may not have the characteristics necessary to implement
certain features. In turn this is due to the use of fine-grained deployment strate-
gies: many small independent packages are used to compose the system. For
example, a program might have the ability to generate graphical output in JPG

and PNG format, but only if the respective libraries libjpg and libpng are
available.

Open-source distributors typically need to use binary packages for speed of
installation. Unfortunately, binary packages tend to force a “one-size-fits-all”
approach upon the distributors for those variation points that are bound at
build-time. In packaging the previous example system the distributor would
either have to deny the JPG/PNG feature to the users, or force it on users that
don’t need it, or deploy binary packages for each desired set of feature selections.

Contribution This paper demonstrates how build management and package man-
agement can be elegantly integrated in a single formalism. We show a build tool
called Maak that constructs systems from descriptions in a simple functional
language. By providing the right modularity and caching constructs, the desired
deployment characteristics can be obtained. In addition, the Maak language
makes it easy to describe build variants.

Overview The remainder of this paper is structured as follows. We give a brief
overview of the Maak language in section 2. We show how variant builds are
implemented in section 3. Deployment methods are shown in section 4. The state
of the implementation is addressed in section 5, and related work in section 6.
We end with concluding remarks and directions for future work in section 7.

2 The Maak System

The task of a build manager is to generate derivates from sources by invoking
the right generators (such as compilers), according to some formal specification
of the system. The specification defines the actions by which derivates can be
produced from sources or other derivates; that is, actions can depend on the
outputs of other actions. The job of the build manager is to find a topological
sort of the graph of actions that performs the actions in the right order.

There are several important aspects to such a tool. First, it should be correct:
it should ensure consistency between the sources and the derivates, i.e., that all
derivates are derived from current sources, or are equal to what they would be
if they had been derived from current sources

Second, it is desirable to have a degree of efficiency: within the constraints of
consistency redundant recompilations should be avoided. It is debatable whether
this is the task of the build manager: it can be argued that this problem is prop-
erly solved in the actual generators, since only they have complete dependency
information. Nevertheless, the efficiency aspect is the main purpose of classic
build managers such as Make [1].

Third, the system specification formalism should enable us to easily specify
variants. That is, we want to parameterise a (partial) specification so that the
various members of a software product line (a set of systems sharing a common
set of features) can be instantiated by providing different parameters.

2.1 Maak

Maak1 is a build manager. It allows system models to be described in a simple
functional language. Maak evaluates an expression that describes a build graph—
a structure that describes what to build and how to build it—and then realises
that graph by performing the actions contained in it.

Let’s look at a real-life example. The ATerm library [3] is a library for the
manipulation and storage of tree-like data structures. The library is fairly small,
consisting of a dozen C source files. An interesting aspect of the package is that
the library has to be built in several variants: the regular library, the library
with debug information enabled, the library with maximal subterm sharing (a
domain feature) disabled, and various others.

Support for this in the package’s Makefile is rather ad hoc. To prevent the
intermediate files used in building each variant from overwriting each other, the
use of special filename extensions has to be arranged for:

SRCS = aterm.c list.c ...

libATerm_a_LIBADD = $(SRCS:.c=.o)
libATerm_dbg_a_LIBADD = $(SRCS:.c=-dbg.o)
libATerm_ns_a_LIBADD = $(SRCS:.c=-ns.o)

This fragment causes the extensions .o, -dbg.o, and -ns.o to be used for the
object files used in building the aforementioned variants. To make it actually
work, we have to provide pattern rules:

%.o: %.c
gcc -c $< -o $@

%-dbg.o: %.c
gcc -g -c $< -o $@

%-ns.o: %.c
gcc -DNO_SHARING -c $< -o $@

Also note that this technique does not cover all variants in the variant space; for
example, no library without maximal sharing but with debug information can be
built.

The ATerm library can be built using Maak as follows. First, we consider the
simple case of building just the regular variant:

srcs = [./aterm.c ./list.c ...];

atermLib = makeLibrary (srcs);

What happens here is that we define a list srcs of the C sources constituting
the library. The variable atermLib is bound to the library that results from
1 From the Dutch verb, “to make”.

applying the function makeLibrary to the sources; makeLibrary is smart enough
to compile the sources before putting them in the library.

It should be noted that atermLib is a variable name and not a filename,
unlike, e.g., ./aterm.c; the sole difference between the two syntactical classes is
that filenames have slashes in them. So what’s the filename of the library? The
answer is that we don’t need to know; we can unambiguously refer to it through
the variable atermLib.

Hence, we can now use the library in building an executable program:

test = link {in = ./test.c, libs = atermLib};

We see here that Maak has two calling mechanisms: positional parameters (e.g., f
(x, y, z)) and by passing an attribute set (f {a = x, b = y, c = z}). The
latter allows arguments to be permuted or left undefined.

Similarly, we can create the debug and no-maximal-sharing variants:

atermLibDbg = makeLibrary {in = srcs, cflags = "-g"};
atermLibNS = makeLibrary {in = srcs, cflags = "-DNO_SHARING"};

To solve the variability issue comprehensively, we can abstract over these
definitions by making a atermLib into a function with arguments debug and
sharing:

atermLib = {debug, sharing}:
makeLibrary
{ in = srcs
, cflags = if (sharing, "", "-DNO_SHARING")

+ if (debug, "-g", "")
};

after which we can select the desired variant:

test = link
{ in = ./test.c
, libs = atermLib {debug = true, sharing = false}
};

2.2 Language Overview

Maak’s input formalism is a lazy functional language, meaning that variable
bindings and function arguments are evaluated only when actually needed. This
has two advantages. First, it prevents unused parts of the build graph from being
evaluated. Second, it allows the definition of control structures in the language
itself. For example, an if-then-else construct can take the form of a regular func-
tion if taking three arguments: the conditional and the values returned on true
and false, respectively; only one of the latter is evaluated.

Types Maak has a number of basic data types:

– Attribute sets are sets of (name, value) pairs, i.e., records. The syntax for
defining attribute sets is somewhat peculiar: attributes are in scope of the
succeeding attributes. That is, in {x = "a", y = x} the attribute y has
value "a". Attributes can be selected by name, e.g., attrs.x.

– Lists are defined by juxtaposition between square brackets: ["x" "y" "z"].
– Strings. Strings are surrounded by single quotes, e.g., ’Hello’. Double quotes

are sugar for lists of strings. For example, "gcc -c foo.c" is sugar for
[’gcc’ ’-c’ ’foo.c’]. Additionally, arbitrary expressions can appear in
list-of-string syntax by putting them between braces, allowing for easy ar-
gument list formation: "gcc -o {out} -c {in}" is sugar for [’gcc’ ’-o’
out ’-c’ in].

Build Graphs Build graphs consist of two types of nodes: file nodes and ac-
tion nodes. File nodes are represented as attribute sets. For example, {type =
"file", name = "/foo/bar"}. Derivates have a attribute partOf whose value
is the action that builds the derivate; that is, it specifies an edge in the graph.

The user can also write files using a more convenient syntax: e.g., /foo/bar
is sugar for the previous example. Internally, Maak uses only absolute filenames.
Relative names (e.g., ./foo.c) are absolutised relative to the Maakfile in which
they occur. The use of absolute names ensures that names are valid in all con-
texts. For example, the action "gcc -I../include foo.c" is fragile because it
only works in the current directory. On the other hand, "gcc -I{../include}
{./foo.c}" works everywhere.

Action nodes are also represented as attribute sets. There are several kinds of
attributes involved in an action. File attributes denote either the action’s sources
or its derivates (i.e., they denote graph edges). A file x is a derivate of an action
y if x.partOf == y, where == denotes pointer equality. The special attribute
build specifies the command to be executed to perform the action.

We can therefore describe the action of generating a parser from a Yacc
grammar as follows:

parser =
{ in = ./parser.y
, csrc => ./parser.c
, header => ./parser.h
, build = "yacc -b {in}"
Output names are derived by Yacc from the input name.
};

The notation => is sugar: it ensures that the partOf attribute of the value points
back at the defining attribute set, i.e., it defines a derivate of the action. Sources
are not marked in a particular way. Given the action parser, the C source can
be selected using the expression parser.csrc.

Defining Tools Rather than write each action in the graph explicitly, we can
abstract over them, that is, we can write a function that takes a set of attributes
and returns an action. The following example defines a basic C compiler function
that takes two arguments: the source file in, and the compiler flags cflags.

compileC = {in, cflags}:
{ in = in
, cflags = cflags
, out => prefix (in) + ’.o’
, build = "cc -c {in} -o {out}"
}.out;

The syntax {args}: body denotes a function taking the given arguments and
returning the body. We select the out attribute of the action to make it easier
to pass the output of one action as input into another (e.g., link (compile
(./foo.c))).

Chaining For reasons of convenience and abstraction, we do not want to specify
every intermediate step involved in building a target. For example, to build
a program from C sources we would rather write link ([./foo.c ./bar.c])
than link ([(compileC (./foo.c)) (compileC (./bar.c))]). The latter is
bad because it exposes how we create an executable, namely, by per-module
compilation. For example, if we would want to use a whole-program compiler
instead, we would have to change the model, thus breaking abstraction.

The solution is chaining: automatically force arguments to be in such a format
that they are acceptable (e.g., a linker doesn’t accept C code but it does accept
compiled C code). Note that Make supports chaining through implicit rules,
but these work in the wrong direction. For example, program: foo.o bar.o
specifies a program in terms of object files rather than source files.

Maak does not provide chaining as a language feature; rather, the tool def-
initions need to do it explicitly, in whatever way the author of the definition
considers useful (i.e., Maak is policy-free in this regard).

For example, here is a compileC function that ensures that its argument is
a C source file, by applying yacc or flex on the input if necessary.

compileC = forceC | {in, cflags}: ...

forceC = {in}: {args, in =
try ([yacc flex (failIfNot (".c"))], in)}

Some language features need to be explained here. The | operator (“pipe”) ap-
plies two functions in sequence, that is, (f | g) (x) = g (f (x)). The func-
tion forceC has the responsibility of converting the input into the appropriate
format, but it should fail if that is not possible, to allow backtracking. This is
what try does: it applies the specified functions to a value in order until one
does not return the special value fail, and returns fail itself if none of them
succeed. If the input is already a C file, we succeed trivially (in failIfNot).

Finally, the special variable args refers to the full set of arguments passed
to a function, not just the formal arguments, while the construct {args, in =
...} returns an attribute set consisting of all original attributes except that in is
replaced with the given value. This feature can be used for attribute propagation.
For example, if a function link calls compileC, we do not want to declare cflags
an argument to link, as that would break encapsulation. Using args we can
generically pass down arbitrary arguments.

An apparent problem with this approach is that it won’t automatically use
functions that convert other file types into C; they have to be added to forceC
(in contrast to Make, which uses implicit rules regardless of where they are
defined). But on closer inspection, this is exactly right: the result of a function
should depend only on its arguments, not on unrelated definitions in the code,
since that makes it hard to predict the behaviour of functions. If extensibility is
required, we can always pass in a convertor function as an argument to compileC.

Module System Maakfiles are modular: they can import other Maakfiles. For
example,

import ./src/Maakfile;

makes the definitions in ./src/Maakfile visible in the current Maakfile. The
argument to the import keyword is an expression (rather than a filename) that
evaluates to a filename. Crucially, as we shall see in section 4, this allows arbitrary
module management policies to be defined by the user (rather than have them
hard-coded in the language).

3 Variability

We saw in the previous section that Maak makes it easy to specify build variants.
In this section we discuss how build variability is implemented in Maak.

A problem in building variants is that we have to prevent the derivates from
each variant from overwriting each other; hence, they should not occupy the
same names in the file system. There are several solutions to this problem. The
approach taken by, e.g., Amake [4] is to build the derivates in situ, that is, in
the location where the tools “natively” expect them; move them to a cache after
they have been build; and move them back when they are needed as input to
another action.

We take a somewhat simpler approach: the actions (i.e., the tool definition
functions) are responsible for choosing output filenames such that variants do
not overwrite each other. The usual approach is to form an output name using
a hash of the input attributes. For example, we use the following definition for
compileC:

compileC = {in, cflags}:
{ in = in
, cflags = cflags

, out => anonFile (".o")
, build = exec ("{cc} -c {in} {cflags} -o {out}")
}.out;

The function anonFile computes a hash of the input attributes and uses that
to form a filename. For example, compileC (./foo.c) might yield a filename
.maak_foo_305c.o, while compileC {in = ./foo.c, cflags = "-g"} would
yield .maak_foo_54db.o; in actuality, we use longer hashes to decrease the
probability of a collision. But what happens when a collision occurs? In that
case, a derivate may overwrite an older derivate, but since Maak registers the
attributes used to build them, this will not lead to unsafe build; if the older
derivate is required again, it will be rebuilt.

4 Deployment

As stated in the introduction, software deployment generally proceeds as follows.
First, the system is built using, e.g., compilers, generally under the control of a
build manager such as Make. Then, the relevant artifacts are packaged, that is,
put in some deployable unit such as a zip-file or an RPM package; depending on
the mechanism meta-data can be added to describe package dependencies and
so on. Finally, the package is installed, typically by an installer shipped as part
of the package, or by a package manager present on the target system such as
the RedHat Package Manager.

Let’s consider an example based on the ATerm library mentioned in sec-
tion 2. The ATerm distribution consists of the library along with a set of utility
programs. Suppose that we wish to split this distribution into two separate pack-
ages: aterm (containing the library), and aterm-utils (containing the utility
programs). The typical source deployment process under Unix is:

1. Fetch the source code for package aterm.
2. Configure and build it (e.g., using Make).
3. Install it. This entails copying the library and C header files to some “global”

location, such as /usr/lib and /usr/include.
4. Fetch the source code for package aterm-utils.
5. Configure and build it. Configuration includes finding or specifying the loca-

tion of the aterm library; for example, Autoconf configuration scripts scan
a number of well-known directories for library and header files.

6. Install it. This means copying the programs to, e.g., /usr/bin.

What is wrong with this approach? It is the way aterm-utils depends
on aterm. It’s not a formal dependency (i.e., it’s not made explicit); rather,
aterm-utils uses some artifacts (say, libATerm.a) that have (hopefully) been
installed by aterm. But these are uncontrolled resources: how do we know that
they are of the right version, built with the right parameters, etc.?

In this section we show a simpler approach to the deployment process. The
central idea is to deploy packages in source form, i.e., along with an appropriate

Maakfile. Packages can depend on each other by having the Maakfile import the
Maakfiles of other packages.

Figure 1 shows the Maakfile for the aterm package. It exports a function
atermLib that builds a variant of the ATerm library, along with a pointer to the
header files. Note that no installation occurs; the source is the installation.

import stdlibs; # for makeLibrary etc.

atermLib = {debug, sharing}:

makeLibrary

{ in = srcs

, cflags = if (sharing, "", "-DNO_SHARING")

+ if (debug, "-g", "")

};

atermInclude = ./;

Fig. 1. Maakfile for package aterm

Figure 2 shows the Maakfile for the aterm-utils package. It imports the
library package through the statement import pkg ("aterm-1.6.7-2"). The
function pkg maps abstract package names to Maakfiles, while ensuring that the
package is present on the system.

import stdlibs;

import pkg ("aterm-1.6.7-2");

default = progs;

progs = [termsize ...];

termsize = link’ (./termsize, ./termsize.c); # and so on...

link’ = {out, in}: put (out, link # put copies a file to ‘out’

{ in = in

, libs = [atermLib {debug = false, sharing = true}]

, includes = [atermIncl]

});

activate = map ({p}: activateExec (p), progs);

Fig. 2. Maakfile for package aterm-utils

An Example Deployment Strategy Now, how do we deploy this? It’s a matter
of defining an appropriate implementation for the function pkg. It should be
emphasised that pkg is not a primitive: it is a regular function. The user can de-
fine other functions, or change the definition of pkg, to obtain arbitrary package
management policies. A possible implementation is outlined in figure 3. Here the
source code is obtained from the network; in particular, it is checked out from
a Subversion repository2. The source code for package X is downloaded into
/var/pkg/X on the local machine, and pkg will return /var/pkg/X/Maakfile
to the import statement.

Client

http://serverA/pkgSrcs.mk

downloads and
registers

http://serverB/aterm/tags/1.6.7-2/

checks out

http://serverC/aterm-utils/tags/1.6.7-1/

checks out

refers to

refers to

implicitly imports

Fig. 3. A deployment strategy

Of course, pkg needs to know how to map package names to URLs. This map-
ping is maintained locally: through the function registerPkg (package-name,
url) we can associate a package name with a URL. These mappings can also be
obtained over the network by fetching a Maakfile containing calls to registerPkg
from the network and executing it (clearly, security issues need to be addressed
in the future!). The package aterm-utils can now be built by issuing the com-
mand

maak -f ’pkg ("aterm-utils-1.6.7-1")’

which will recursively obtain the source for aterm-utils and aterm, build the
variant of atermLib required for the utilities, and finally build the utilities.
2 Subversion is a version management system intended to be “a compelling replace-

ment for CVS in the open source community” [5]. It fixes CVS’s most obvious defi-
ciencies, such as non-versioned directories and non-atomic commits.

(The switch -f obtains a Maakfile from the given expression rather than from
the current directory).

Installation The above command will build the ATerm utilities, but it will not
“install” them. In the Make paradigm, it is customary to have a phony install
target that copies the appropriate files to the right system directories. This
is essentially a redundant step. Indeed, it’s just an additional complication (for
example, it is often quite troublesome to get executables using dynamically linked
libraries to work both in the source and installed location).

The main point of installing is to make software available to the user; for
example, copying a program to /usr/bin has the effect of having it appear
in every user’s search path. That is, the point of installing is to activate the
software. For example, the function activateExec will create a symbolic link in
/usr/bin to its argument. Hence, the command

maak -f ’pkg ("aterm-utils-1.6.7-1")’ activate

will build the utilities and make them available to the user. (The function map
used in figure 2 applies a function—here, activateExec—to all elements of a
list).

Binary distribution Of course, we cannot expect the clients to build from source,
so we need the ability to transparently export derivates to the client; if a client
runs Maak to build derivates that have already been built, i.e., were built with
the same attributes, then the pre-existing ones will be used. On the other hand,
if the client attempts to build a derivate with attributes or sources such that no
equivalent derivate exists in any cache, it must be built locally. This enables a
graceful fallback from binary distribution to source distribution.

Maak provides a primitive implementation of this idea. The command

maak ’exportDerivates (/tmp/shared, foo)’

will copy all derivates occurring in the build graph defined by the variable foo to
the directory /tmp/shared, where a mapping is maintained from build attributes
to files. Subsequently, another user can build foo through the command maak
--import /tmp/shared foo; Maak will try to rebuild missing derivates first by
looking them up in the mapping, and by rebuilding them if they do not occur in
/tmp/shared. Therefore, if any changes have been made to the sources of foo,
or to the build attributes, the derivates will be rebuilt.

5 Implementation

A prototype of Maak has been implemented and is available under the terms
of the GNU Lesser General Public License at http://www.cs.uu.nl/~eelco/
maak/. The implementation comes with a (currently small) standard library pro-
viding tool definitions for a number of languages and tools, include C and Java.
The prototype is written in Haskell, a purely functional programming language.

http://www.cs.uu.nl/~eelco/maak/
http://www.cs.uu.nl/~eelco/maak/

This is a nice language for prototyping, but ultimately a re-implementation in
C or C++ would be useful to improve portability and efficiency.

Maak implements up-to-date checking by tracing derivates per directory in
a hidden file mapping filenames to the attributes used to build them, along with
exact timestamps (and optionally, hashes of the contents) of input files.

A useful feature of the prototype is the ability to perform build audits on
Linux systems to verify the completeness of Maakfile dependencies. By using
the strace utility Maak can trace all open() system calls, determine all actual
inputs and outputs of an action, and complain if there is a mismatch between
the specified and actual sets of inputs and outputs.

Another useful feature are generic operations on the build graph: given a
build graph, we can, for example, collect all leaf nodes to automatically create a
source distribution, or collect all nodes that are not inputs to actions to create
a binary distribution.

6 Related Work

Build Managers The most widely used build manager is Make [1], along with a
large number of clones, not all of them source-compatible. Make’s model is very
simple: systems are described as a set of rules that specify a command through
which a list of derivates can be created from a list of sources. Make rebuilds a
derivate if any of the sources has a newer timestamp (a mechanism that is in
itself subject to race conditions). Unfortunately, Make often causes inconsistent
builds, since Makefiles tend to specify incomplete dependency information, and
the up-to-date detection is unreliable; e.g., changes to compiler flags will not
trigger recompilation. Make’s input language is also quite simplistic, making it
hard to specify variants.

The Makefile formalism is not sufficiently high-level; it does not provide scal-
able abstraction facilities. The abstraction mechanisms — variables and pattern
rules — are all global. Hence, if we need to specify different ways of building
targets, we cannot use them, unless we split the system into multiple Make-
files. This, however, creates the much greater problem of incomplete dependency
graphs [6].

There have been attempts to fix this defect by building layers on top of Make
rather than replace it, such as Automake [7], which generates Makefiles from a
list of macro invocations. For example, the definition foo_SOURCES = a.c b.y
will cause Automake to generate Make definitions that build the executable foo
from the given C and Yacc source, install it, create a source distribution, and
so on. The problem with such generation tools is that they do not shield the
user from the lower layers; it is the user’s job to map problems that occur in a
Makefile back to the Automakefile from which it was generated. Automake does
not provide a module system and so does not solve the problem of incomplete
dependency graphs. It provides some basic variability mechanisms, such as the
ability to build a library in several variants. However, Automake is not extensible,
so this feature is somewhat ad hoc.

Autoconf [8] is often used in conjunction with Make and/or Automake to
specialise an element of a product line automatically for the target platform. It is
typically used to generate Makefiles from templates with values discovered during
the configuration process substituted for variables. The heuristic approach to
source configuration promoted by Autoconf is very useful in practice, but also
unreliable. For example, we should not guess whether /usr/lib/libfoo.so is
really the library we’re looking for; rather, we should import the desired version
of the library so that the process can never go wrong.

Autobundle [9] is a tool to simplify composition of separately deployable
Autoconf-based packages. Based on descriptions of package dependencies, lo-
cations, etc., Autobundle generates a script that fetches the required source
packages from the network, along with a configuration script and a Makefile
for the composed package. This is similar to the package management strat-
egy described in section 4, but it is yet another layer in the construction and
deployment process.

A handful of systems go beyond Make’s too-simple description language.
Vesta [10] integrates version management and build management. It’s Software
Description Language is a functional language [11], similar to Maak’s. An in-
teresting aspect is the propagation of “global” settings (such as compiler flags),
which happens by passing down an environment as a hidden argument to every
function call; the environment is bound at top-level. In Maak propagation is ex-
plicit and left to the authors of tool definitions. Vesta also allows derivates to be
shared among users; if a user attempts to build something that has previously
been built by another user, the derivates can be obtained from a cache. This is
quite reminiscent of our stated goal of allowing transparent binary deployment.
However, the Vesta framework only allows building from immutable sources;
that is, all sources to the build process (such as compilers) must be under ver-
sion control. When deploying source systems, unfortunately, we cannot expect
the recipient to have a identical environment to our own.

Odin [12] also has a somewhat functional flavour. For example, the expression
hello.c denotes a source, while hello.c :exe denotes the executable obtained
by compiling and linking hello.c; variants build can be expressed easily, e.g.,
hello.c +debug :exe. However, tool definitions in Odin are special entities,
not functions.

Amake [4] is the build tool for the Amoeba distributed operating system.
Like Odin, it separates the specification of build tools and system specifications.
Given a set of sources Amake automatically completes the build graph, that is,
it finds instances of tool definitions that build the desired targets from the given
sources. This is contrary to the model of explicit tool application to values in
Vesta and Maak. The obvious advantage is that specifications become shorter;
the downside is that it becomes harder to specify alternative ways of building,
and to see what’s going on (generally, it is a good idea to be explicit in saying
what you want).

The Proteus Configuration Language [13] aims to model all variability oc-
curring in a system; Maak merely aims to implement it. Due to this smaller

scope Maak’s input language is simpler: for example, Proteus has a family
entity to describe product families; in Maak a product family is just a function
from a set of parameters to the resulting artifacts.

Package Managers There are many package management systems, ranging from
the basic— providing just simple installation and uninstallation facilities for in-
dividual packages—to the advanced—providing the features needed for ensuring
a consistent system. The popular RedHat Package Manager (RPM) [2], used
in several Linux distributions, is a reasonably solid system. By maintaining a
database of all installed packages, it ensures that packages can be cleanly unin-
stalled, do not overwrite each others files, allows tracibility (e.g., to what package
does file X belong?), verifies that the prerequisites for installation of a package
(specified by the developer in an RPM specfile) are met, and so on.

But RPM also clearly demonstrates the dangers of separating build and pack-
age management: RPM packages often have incomplete dependency information
[14]. For example, a package may use some library libfoo.so without actually
declaring the foo package as a prerequisite. This cannot happen in Maak because
the only way to access the library is by importing package foo.

Not a failing of RPM per se but of RPM package builders (and, indeed, most
Unix packaging systems) is the difficulty of having several variants of the same
product installed at the same time; e.g., RPMs of different versions or variants of
Apache typically all want to be installed in /usr/lib/apache/. This is mostly a
“cultural” problem: a better installation scheme (such as described in section 4)
solves this problem. For example, a very useful feature for system administrators
is the ability to query to what package a file belongs. This query becomes trivial
if every package X is installed in /var/pkg/X.

There also exist several source-based package management systems, such as
the FreeBSD Ports Collection [15]. The main attraction is that the system can
be optimised towards the platform and requirements of the user, e.g., by select-
ing specific compiler optimisation flags for the user’s processor, or by disabling
unnecessary optional package features. The obvious downsides are slowness of
installation, and that validation becomes hard: with so many possible variants,
how can we be sure that the system compiles correctly, let alone runs correctly?
For most ports pre-compiled packages exist (which do not offer build-time vari-
ability, of course). The two modes of installation are not abstracted over from
the user’s perspective; i.e., both present different user interfaces.

7 Conclusion

In this paper we have shown how build management and package management
can be integrated. A prototype has been implemented. In the remainder of this
section some issues for future work will be sketched.

The most important issue is that the sharing of derivates—essential for trans-
parent binary/source distribution—is currently rather primitive. Any change to
the attributes will invalidate a derivate. This is too rigid. For example, currently

recompilation will be triggered if the recipient has a different C compiler (since
it’s a dependency of the build process). A related issue is that we need to be able
to do binary-only distributions. This could be done by making Maak pretend
that the source does exist (e.g., by supplying file content hashes). Security issues
related to derivate sharing need to be addressed as well. For example, if the
administrator has built a package, other users should use it; but not the other
way around.

Maak currently deals with build-time dependencies. Of course, we should be
also able to handle run-time dependencies, such as the use of shared libraries.

Acknowledgments This work was supported in part by the Software Engineering
Research Center (SERC). I am grateful to Eelco Visser, Andres Löh, and Dave
Clarke for commenting on drafts of this paper.

References

1. Feldman, S.I.: Make — a program for maintaining computer programs. Software
— Practice and Experience 9 (1979) 255–65

2. Bailey, E.C.: Maximum RPM. Sams (1997)
3. van den Brand, M.G.J., de Jong, H.A., Klint, P., Olivier, P.: Efficient annotated

terms. Software—Practice and Experience 30 (2000) 259–291
4. Baalbergen, E.H., Verstoep, K., Tanenbaum, A.S.: On the design of the Amoeba

configuration manager. In: Proc. 2nd Int. Works. on Software Configuration Man-
agement. Volume 17 of ACM SIGSOFT Software Engineering Notes. (1989) 15–22

5. CollabNet: Subversion home page. http://subversion.tigris.org (2002)
6. Miller, P.: Recursive make considered harmful (1997)
7. Free Software Foundation: Automake home page. http://www.gnu.org/software/

automake/ (2002)
8. Free Software Foundation: Autoconf home page. http://www.gnu.org/software/

autoconf/ (2002)
9. de Jonge, M.: Source tree composition. In: Seventh International Conference on

Software Reuse. Number 2319 in Lecture Notes in Computer Science, Springer-
Verlag (2002)

10. Heydon, A., Levin, R., Mann, T., Yu, Y.: The Vesta approach to software con-
figuration management. Technical Report Research Report 168, Compaq Systems
Research Center (2001)

11. Heydon, A., Levin, R., Yu, Y.: Caching function calls using precise dependen-
cies. In: ACM SIGPLAN ’00 Conference on Programming Language Design and
Implementation, ACM Press (2000) 311–320

12. Clemm, G.M.: The Odin System — An Object Manager for Extensible Software
Environments. PhD thesis, University of Colorado at Boulder (1986)

13. Tryggeseth, E., Gulla, B., Conradi, R.: Modelling systems with variability using
the Proteus configuration language. In Estublier, J., ed.: Software Configuration
Management: selected papers — ICSE SCM-4 and SCM-5 Workshops. Volume
1005 of Lecture Notes in Computer Science (LNCS)., Springer (1995)

14. Hart, J., D’Amelia, J.: An analysis of RPM validation drift. In: LISA ’02: Sixteenth
Systems Administration Conference, USENIX Association (2002) 155–166

15. The FreeBSD Project: FreeBSD Ports Collection. http://www.freebsd.org/

ports/ (2002)

http://subversion.tigris.org
http://www.gnu.org/software/automake/
http://www.gnu.org/software/automake/
http://www.gnu.org/software/autoconf/
http://www.gnu.org/software/autoconf/
http://www.freebsd.org/ports/
http://www.freebsd.org/ports/

	Integrating Software Construction and Software Deployment
	Eelco Dolstra

