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Abstract
Existing package and system configuration management tools suf-
fer from an imperative model, where system administration actions
such as upgrading packages or changes to system configuration
files are stateful: they destructively update the state of the sys-
tem. This leads to many problems, such as the inability to roll back
changes easily, to run multiple versions of a package side-by-side,
to reproduce a configuration deterministically on another machine,
or to reliably upgrade a system. In this paper we show that we can
overcome these problems by moving to a purely functional system
configuration model. This means that all static parts of a system
(such as software packages, configuration files and system startup
scripts) are built by pure functions and are immutable, stored in a
way analogously to a heap in a purely function language. We have
implemented this model in NixOS, a non-trivial Linux distribution
that uses the Nix package manager to build the entire system con-
figuration from a purely functional specification.

Categories and Subject Descriptors D.2.9 [Software Engineer-
ing]: Management—Software configuration management; D.3.2
[Programming Languages]: Language Classifications—Applicative
(functional) programming

General Terms Experimentation, Languages, Reliability.

1. Introduction
Current operating systems are managed in an imperative way. With
this we mean that configuration management actions such as up-
grading software packages, making changes to system options,
or adding additional system services are done in a stateful way:
by performing destructive updates to files. This model leads to
many problems: the “DLL hell” (where upgrading an application
may suddenly break another because of changes to shared compo-
nents (Anderson 2000)), the inability to roll back changes easily or
to reproduce a configuration reliably, difficulty in running multiple
versions of a package side-by-side, the system being in an incon-
sistent state during updates, and so on.

In this paper we show that it is possible to manage systems in
a radically different way by moving to a purely functional model.
In this model, the static artifacts of a running system — software
packages, configuration files, system startup scripts, etc. — are gen-
erated by functions in a purely functional specification language.
Just like values in a purely functional language, these artifacts never
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change after they have been built; rather, the system is updated to
a new configuration by changing the specification and rebuilding
the system from it. This allows a system to be built determinis-
tically, and therefore reproducibly. It allows the user to roll back
the system to previous configurations, since previous configura-
tions are not overwritten. Perhaps most importantly, statelessness
makes configuration actions predictable: they do not mysteriously
fail because of some unknown aspect of the state of the system.

We have previously shown how package management — the
installation and management of software packages — can be done
in a purely functional way, in contrast to the imperative models
of conventional tools such as RPM (Foster-Johnson 2003). This
concept was implemented in the Nix package manager (Dolstra
et al. 2004; Dolstra 2006), summarised in Section 3. In this paper
we extend this approach from package management to system
configuration management. That is, not just software packages are
built from purely functional specifications, but also all other static
parts of a system, such as the configuration files that typically live
in /etc under Unix.

We demonstrate the feasibility of this approach by means of
NixOS, a Linux distribution that uses Nix to construct and update
the whole system from a declarative specification. Every artifact is
stored under an immutable path such as /nix/store/cj22mw17...-
linux-2.6.23.17 that includes a cryptographic hash of all inputs
involved in building it. There is no /usr, /lib or /opt, and only
a very minimal /bin and /etc.

NixOS’s purely functional approach to configuration manage-
ment gives several advantages to users and administrators. Upgrad-
ing a system is much more deterministic: it does not unexpectedly
fail depending on the previous state of the system. Thus, upgrad-
ing is as reliable as installing from scratch, which is generally not
the case with other operating systems. This also makes it easy to
reproduce a configuration on a different machine. The entire sys-
tem configuration can be trivially rolled back. The system is not
in an inconsistent state during upgrades; upgrades are atomic. Un-
privileged users can securely install different versions of software
packages without interfering with each other.

The contributions of this paper are as follows:

• We show how a full-featured Linux distribution (NixOS) can
be built and configured in a declarative way using principles
borrowed from purely functional languages (Section 5).

• We discuss in detail the lazy purely functional Nix expression
language that describes how to build system configurations, and
why purity and laziness are essential (Section 4).

• We measure the extent to which NixOS and Nix build actions
are pure (Section 6).

2. Imperative package management
Most package management tools can be viewed as having an im-
perative model. That is, deployment actions performed by these



tools are stateful; they destructively update files on the system.
For instance, most Unix package managers, such as the Red Hat
Package Manager (RPM) (Foster-Johnson 2003), Debian’s apt and
Gentoo’s Portage, store the files belonging to each package in the
conventional Unix file system hierarchy, e.g. directories such as
/bin. Packages are upgraded to newer versions by overwriting the
old versions. If shared components are not completely backwards-
compatible, then upgrading a package can break other packages.
Upgrade actions or uninstallations cannot easily be rolled back. The
Windows registry is similarly stateful: it is often impossible to have
two versions of a Windows application installed on the same sys-
tem because they would overwrite each other’s registry entries.

Thus, the filesystem (e.g., /bin and /etc on Unix, or C:\
Windows\System32 on Windows) and the registry are used like
mutable global variables in a programming language. This means
that there is no referential transparency. For instance, a pack-
age may have a filesystem reference to some other package, e.g.
/usr/bin/perl. But this reference does not point to a fixed value;
the referent can be updated at any point, making it hard to give any
assurances about the behaviour of the packages that refer to it. For
instance, upgrading some application might trigger an upgrade of
/usr/bin/perl, which might cause other applications to break. This
is known as the “DLL hell” or “dependency hell”.

Statefulness also makes it hard to support multiple versions
of a package. If two packages depend on conflicting versions of
/usr/bin/perl, we cannot satisfy both at the same time. Instead, we
would have to arrange for the versions to be placed under different
filenames, which requires explicit actions from the packager or the
administrator (e.g., install a Perl version under /usr/local/perl-
5.8). This also applies to configuration files. For instance, running
two instances of an Apache web server might require cloning and
tweaking configuration files, control scripts, and so on.

Likewise, building a package is a stateful operation. In RPM,
the building of a binary package is described by a spec file that
lists the build actions that must be performed to construct the
package, along with metadata such as its dependencies. However,
the dependency specification has two problems.

First, it is hard to guarantee that the dependency specification
is complete. If, for instance, the package calls the python program,
it will build and run fine on the build machine if it has the python
package installed, even if that package is not listed as a dependency.
However, on the end user machine python may be missing, and the
package will fail unexpectedly.

Second, RPM dependency specifications are nominal, that is,
they specify just the name (and possibly some version constraints)
of each dependency, e.g. Requires: python >= 2.4. A package
with this dependency will build on any system where python with a
sufficiently high version is registered in RPM’s database; however,
the resulting binary RPM has no record of precisely what instance
of python was used at build time, and therefore there is no way to
deterministically reproduce it. Indeed, it is not clear how to boot-
strap a set of source RPMs: one quickly runs into circular build-
time dependencies and incomplete dependency specifications.

Package managers like RPM are even more stateful when it
comes to non-software artifacts such as configuration files in /etc.
When a configuration file is installed for the first time, it is treated
as a normal package file. On upgrades, however, it cannot be sim-
ply overwritten with the new version, since the user may have made
modifications to it. There are many ad hoc (package-specific) so-
lutions to this problem: the file can be ignored, hoping that the old
one still works; it can be overwritten (making a backup of the old
version), hoping that the user’s changes are inessential; or a post-
install script (delivered as part of the package’s meta-data) can
attempt to merge the changes. Indeed, post-install scripts are fre-
quently used to perform arbitrary, strongly stateful, actions.

Even worse, configuration changes are typically not under the
control of a system configuration management tool like RPM at
all. Users might manually edit configuration files in /etc or change
some registry settings, or run tools that make such changes for them
— but either way there is no trace of such actions. The fact that a
running system is thus the result of many ad hoc stateful actions
makes it hard to reproduce (part of) a configuration on another
machine, and to roll back configuration changes.

Of course, configuration files could be placed under revision
control, but that does not solve everything. For instance, configura-
tion data such as files in /etc are typically related to the software
packages installed on the system. Thus, rolling back the Apache
configuration file may also require rolling back the Apache package
(for instance, if we upgraded Apache, made some related changes
to the configuration, and now wish to undo that change). Further-
more, changes to configuration files are often actualised in very
different ways: a change to the Unix filesystem table /etc/fstab
might be actualised by running mount -a to mount any new filesys-
tems added to that file, while a change to the Apache web server
configuration file httpd.conf requires running a command like
/etc/init.d/apache reload. Thus any change to a configuration
file, including a rollback, may require specific knowledge about
additional commands that need to be performed.

In summary, all this statefulness comes at a high price to users:

• It is difficult to allow multiple versions of a package on the
system at the same time, or to run multiple instantiations of a
service (such as a web server).

• There is no traceability: the configuration of the system is a
result of a sequence of stateful transformations that are not
under the control of a configuration management system. This
makes it hard to reproduce a configuration elsewhere. The lack
of traceability specifically makes rollbacks much harder.

• Since configurations are the result of stateful transformations,
there is little predictability. For instance, upgrading a Linux
or Windows installation, as opposed to doing a clean reinstall,
tends to be much more error-prone, precisely because the up-
grade depends on the previous state of the system, while a clean
reinstall has no such dependency.

These problems are similar to those caused by the lack of refer-
ential transparency in imperative programming languages, such as
the difficulty in reasoning about the behaviour of functions in the
presence of mutable global variables or I/O. Indeed, the absence of
such problems is a principal feature of purely functional languages
such as Haskell (Hudak 1989). In such languages, the result of a
function depends only on its inputs, and variables are immutable.
This suggests that the deployment problems above go away if we
can somehow move to a purely functional way to store software
packages and configuration data.

3. Purely functional package management
Nix (Dolstra et al. 2004; Dolstra 2006), the package manager un-
derlying NixOS, has such a purely functional model. This means
that packages are built by functions whose outputs in principle de-
pend only on their function arguments, and that packages never
change after they have been built.

Nix expressions Packages are built from Nix expressions, a dy-
namically typed, lazy, purely functional language. The goal of Nix
expressions is to describe graphs of build actions called deriva-
tions. A derivation consists of a build script, a set of environment
variables, and a set of dependencies (other derivations). A package
is built by recursively building the dependencies, then invoking the
build script with the given environment variables.



{stdenv, fetchurl, ghc, X11, xmessage}: 1

let version = "0.5"; in

stdenv.mkDerivation 2 (rec {

name = "xmonad-${version}";

src = fetchurl {
url = "http://hackage.haskell.org/.../${name}.tar.gz";
sha256 = "cfcc4501b000fa740ed35a5be87dc012...";

};

buildInputs = [ghc X11]; 3

configurePhase = ’’ 4
substituteInPlace XMonad/Core.hs --replace \

’"xmessage"’ ’"${xmessage}/bin/xmessage"’ 5
ghc --make Setup.lhs
./Setup configure --prefix="$out" 6

’’;

buildPhase = ’’
./Setup build

’’;

installPhase = ’’
./Setup copy
./Setup register --gen-script

’’;

meta = { 7
description = "A tiling window manager for X";

};
})

Figure 1. xmonad.nix: Nix expression for xmonad

Figure 1 shows the Nix expression for the xmonad package, a
tiling X11 window manager written in Haskell. This expression is
a function that takes a set of arguments (declared at point 1 ) and
returns a derivation (at 2 ). The most important data type in the
Nix expression language is the attribute set, a set of name/value
pairs, written as { name1 = value1; ...; namen = valuen; }.
The keyword rec defines a recursive attribute set, i.e., the attributes
can refer to each other. The syntax {arg1, ..., argn}: body defines
an anonymous function that must be called with an attribute set
containing the specified named attributes.

The arguments of the xmonad function denote dependencies
(stdenv, ghc, X11, and xmessage), as well as a helper function
(fetchurl). stdenv is a package that provides a standard Unix build
environment, containing tools such as a C compiler and basic Unix
shell tools. X11 is a package providing the most essential X11
client libraries.

The function stdenv.mkDerivation is a helper function that
makes writing build actions easier. Build actions generally have
a great deal of “boiler plate” actions. For instance, most Unix
packages are built by a standard sequence of commands: tar xf
sources to unpack the sources, ./configure --prefix=prefix to de-
tect system characteristics and generate makefiles, make to com-
pile, and make install to install the package in the directory pre-
fix . mkDerivation is a function that captures this commonality, al-
lowing packages to be written succinctly. For instance, Figure 2
shows the function that builds the xmessage package. The xmonad
package, being Haskell-based, does not build in this standard way,
so mkDerivation allows the various phases of the package build
sequence to be overridden, e.g. configurePhase 4 specifies shell
commands that configure the package. On the other hand, unpack-

{stdenv, fetchurl, pkgconfig, libXaw, libXt}:

stdenv.mkDerivation {
name = "xmessage-1.0.2";
src = fetchurl {

url = http://.../X11R7.3//xmessage-1.0.2.tar.bz2;
sha256 = "1hy3n227iyrm323hnrdld8knj9h82fz6...";

};
buildInputs = [pkgconfig libXaw libXt];

};

Figure 2. xmessage.nix: Nix expression for xmessage

ing xmonad’s source follows the convention, so it is not necessary
to specify an unpackPhase — the default functionality provided
by mkDerivation suffices. We emphasise that mkDerivation is just
a function that abstracts over a common build pattern, not a lan-
guage construct: functions that abstract over other build patterns
can easily be written. For instance, the xmonad package makes
use of Haskell’s Cabal build system (http://haskell.org/cabal/).
It therefore makes sense to extract the Cabal build commands (all
the invocations of ./Setup) into a Cabal-specific wrapper around
mkDerivation, thereby allowing the expression specific to xmonad
to be reduced to the same conciseness as the xmessage example.
Due to the functional nature of the Nix expression language, nearly
all recurring patterns can be captured in functions in this way.

All attributes in the call to mkDerivation are passed as envi-
ronment variables to the build script (except the meta attribute 7 ,
which is filtered out by the mkDerivation function). For instance,
the environment variable name will be set to xmonad-0.5. For at-
tributes that specify other derivations, the paths of the packages
they build are substituted. For instance, the buildInputs environ-
ment variable (which is used by stdenv to generically set up other
environment variables such as the C include file search path and
the linker search path) will contain the paths to the ghc and X11
dependencies 3 . Likewise, the function fetchurl returns a deriva-
tion that downloads the specified file and verifies its content against
the given cryptographic hash; thus, the environment variable src
will hold the location of the xmonad source distribution, which
the stdenv build script will unpack. (fetchurl may seem an impure
function, but because the output is guaranteed to have a specific
content by the cryptographic hash, which Nix verifies, it is pure as
far as the purely functional deployment model is concerned.)

When invoking a build script to perform a derivation, Nix will
set the special environment variable out to the intended location in
the filesystem where the package is to be stored. Thus, xmonad is
configured with a build prefix equal to the path given in out 6 .

Since the expression that builds xmonad is a function, it must
be called with concrete values for its arguments to obtain an actual
derivation. This is the essence of the purely functional package
management paradigm: the function can be called any number
of times with different arguments to obtain different instances of
xmonad. Just as multiple calls to a function in a purely functional
language cannot “interfere” with each other, these instances are
independent: for instance, they will not overwrite each other.

Figure 3 shows an attribute set containing several concrete
derivations resulting from calls to package build functions. The
attribute xmonad is bound to the result of a call to the function in
Figure 1 8 . Thus, xmonad is a concrete derivation that can be built.
Likewise, the arguments are concrete derivations, e.g. xmessage is
the result of a call to the function in Figure 2.

The end user can now install xmonad by doing

$ nix-env -f all-packages.nix -i -A xmonad



rec {
xmonad = import .../xmonad.nix { 8

inherit stdenv fetchurl ghc X11 xmessage;
};

xmessage = import .../xmessage.nix { ... };

ghc = ghc68;

ghc68 = import ../development/compilers/ghc-6.8 {
inherit fetchurl stdenv readline perl gmp ncurses m4;
ghc = ghcboot;

};

ghcboot = ...;
stdenv = ...;
...

}

Figure 3. all-packages.nix: Function calls to instantiate packages

which builds the xmonad derivation and all its dependencies, and
ensures that the xmonad binary appears in the user’s PATH in a
way described below. Derivations that have been built previously
are not built again. Other nix-env operations include -e to uninstall
a package, and --rollback to undo the previous nix-env action.

Nix is available at http://nixos.org/, along with the Nix Pack-
ages collection (Nixpkgs), a large collection of Nix expressions for
around 1350 packages.

The Nix store Build scripts only need to know that they should
install the package in the location specified by the environment
variable out, which Nix computes before invoking each package’s
build script. So how does Nix store packages? It must store them
in a purely functional way: different instances of a package should
not interfere, i.e., should not overwrite each other.

Nix accomplishes this by storing packages as immutable chil-
dren of the Nix store, the directory /nix/store, with a filename con-
taining a cryptographic hash of all inputs used to build the package.
For instance, a particular instance of xmonad might be stored under

/nix/store/8dpf3wcgkv1ixghzjhljj9xbcd9k6z9r-xmonad-0.5/

where 8dpf3wcgkv1ixghzjhljj9xbcd9k6z9r is a base-32 represen-
tation of a 160-bit hash. The inputs used to compute the hash are
all attributes of the derivation (e.g., the attributes at 2 in Figure 1,
plus some default attributes added by the mkDerivation function).
These typically include the sources, the build commands, the com-
pilers used by the build, library dependencies, and so on. This is
recursive: for instance, the sources of the compiler also affect the
hash. Nix computes this path and passes it through the environment
variable out to the build script.

Figure 4 shows a part of a Nix store containing xmonad and
some of its build time and runtime dependencies. The solid arrows
denote the existence of references between files, i.e., the fact that
a file in the store contains the path of another store object. For in-
stance, as is required for dynamically linked ELF executables (TIS
Committee 1995), the xmonad executable contains the full path to
the dynamic linker ld-linux.so.2 in the Glibc package.

Figure 4 also shows the notion of profiles, which enable
atomic upgrades and rollbacks and allow per-user package man-
agement. Names that are slanted denote symlinks, with dot-
ted arrows denoting symlink targets. The user has the directory
/nix/var/nix/profiles/user/bin in her path. When a package is in-
stalled through nix-env -i, a pseudo-package called a user environ-
ment is automatically built that consists of symlinks to all installed
packages for that user 11 . A symlink /nix/var/nix/profiles/user -
number 10 is created to point to that user environment, and fi-

/nix/var/nix/profiles

alice 9

alice-14
alice-15 10

/nix/store

ias2837rija0...-user-env 11

bin

firefox
ghc

xmonad
8dpf3wcgkv1i...-xmonad-0.5

bin

xmonad
d71fzifksc23...-xmessage-1.0.2

bin
xmessage

zahfcxzylmad...-glibc-2.7

lib

libc.so.6

Figure 4. The Nix store, containing xmonad and some of its de-
pendencies, and profiles

nally the symlink /nix/var/nix/profiles/user 9 is atomically up-
dated to point at the former symlink. This makes the new set
of packages appear in an atomic action in the user’s PATH. A
rollback is trivially done by flipping the symlink back (e.g. to
/nix/var/nix/profiles/alice-14).

Advantages The purely functional approach has several advan-
tages for package management:

• Nix prevents undeclared build time dependencies through the
use of the store: since store paths are not in any default search
paths, they will not be found.

• Nix detects runtime dependencies automatically by scanning
for references, i.e., the hash parts of filenames. E.g., if the
output of a build that had the path /nix/store/8dpf3wcg...-
xmonad-0.5 as a build-time dependency contains the string
8dpf3wcg..., then we know that it has a potential runtime de-
pendency on this instance of xmonad. This is analogous to
how the mark phase of a conservative garbage collector detects
pointers in languages that do not have a formally defined pointer
graph structure (Boehm 1993). Since the full dependency graph
is known, we can reliably deploy a package to another machine
by copying its closure under the references relation.

• Since packages are immutable, there is no DLL hell. For in-
stance, if xmonad uses glibc-2.7, and the installation of some
other package causes glibc-2.8 to be installed, it will not break
xmonad: it will continue to link against glibc-2.7.

• Knowledge of the runtime dependency graph allows unused
packages to be garbage collected automatically. The roots of
the collector are the profile symlinks in Figure 4.

• Since actions such as upgrading or downgrading to a dif-
ferent version are non-destructive, the previous versions are
not touched. Therefore, it is possible to roll back to previous
versions (unless the garbage collector has explicitly been in-
voked in the meantime). Also, since upgrades and rollbacks are
atomic, the user never sees a half-updated package; the system
is never in an inconsistent state at any point during the upgrade.



expressions
e ::= x identifier

| nat | str | uri | path literal
| [e∗] list
| rec? {b∗} attribute set
| let b∗ in e
| e.x selection
| x : e | {fs?} : e function
| e e application
| if e then e else e conditional
| with e; e inclusion
| (e) group
| e • e operator
| !e negation

bindings
b ::= x = e;

| inherit x∗ | inherit (e) x∗

formls
fs ::= x, fs | x, | x

operators
• ::= == | != | && | || | -> | // | ~ | +

Figure 5. Syntax of the Nix expression language

• While the Nix model is in essence a source deployment model
(since Nix expressions describe how to build software from
source), purity allows transparent binary deployment as an op-
timisation. One can register with Nix that store paths are avail-
able for download at a remote machine (such as the Nixpkgs
distribution site). Then, when Nix needs to build some path p, it
checks whether p is available remotely. If so, it is downloaded
in lieu of building. Otherwise, it is built normally. Thus, binary
deployment is a simple optimisation of source deployment.

• A purely functional build language allows build-time variabil-
ity in packages to be expressed in a natural way, and allows
abstracting over common build patterns.

• Having a declarative specification of the system pays off partic-
ularly when performing upgrades that invalidate a large number
of packages. For instance, an upgrade of GCC or the core C li-
braries might essentially require nearly the entire system to be
rebuilt. On a smaller, but not less annoying scale, every upgrade
of GHC requires all Haskell libraries to be rebuilt. These rela-
tions can not only easily be expressed in Nix – the upgrade path
is also extremely painless, as the old versions remain usable in
parallel for as long as desired. The system will always be con-
sistent and the different versions do not interfere.

4. The Nix expression language
In this section, we formalise the syntax and semantics of the Nix
expression language, and motivate why certain language features
are essential to the language.

4.1 Syntax
The Nix expression language is a fairly simple, dynamically typed,
purely functional language. Its syntax is shown in Figure 5. Next
to the constructs shown, the language has a considerable number of
built-in functions that syntactically are normal identifiers. We focus
our description on the features that make the language special and
well-suited for its task of describing packages.

There are a few base types: Booleans, natural numbers, strings,
and paths. More complex types can be built using lists, attribute
sets, and functions.

String literals String literals can be enclosed in double quotes
("string") or two single quotes (’’string’’). Both forms of
strings can span multiple lines and allow interpolation: arbitrary
expressions can be inserted into the middle of strings by writing
${expr} (such as at 5 in Figure 1). Interpolations are desugared to
string concatenations.

The second form, surrounded by two single quotes, is known as
an indented string: Indentation is removed from an indented string
in a clever way. Indented strings are very convenient for includ-
ing shell scripts in a Nix expression. Shell language itself makes
frequent use of quoting (with both single and double quotes) and
escaping via \, but rarely contains the ’’ combination. Therefore,
large chunks of shell scripts can be included in a Nix expression
almost literally using indented strings.

As a third form of string literals, the Nix language supports URI
literals. URIs according to RFC 2396 can be specified directly,
without using quotes, as a convenience feature: the programmer
gets free syntax checking of URIs.

Paths Next to strings and URIs, Nix also handles path literals
that are absolute or relative Unix paths and are given without
surrounding quotes. Paths are treated slightly different from strings
during evaluation.

Lists Lists can be specified by enclosing a space-separated se-
quence of elements within square brackets. No special elimination
constructs are part of the language, but there are built-in functions
for accessing the head and tail of a list. Lists can be heterogeneous,
e.g., [1 true [./file "endo lives"]] is a valid list.

Attribute sets The central type of the Nix language is attribute
sets. Attribute sets essentially are records. They are introduced by
listing a number of bindings. Bindings either associate an attribute
name with an expression, or introduce names from the surrounding
scope by means of inherit. By specifying a source, inherit can
also introduce names from another attribute set. An attribute x can
be selected from an attribute set a by writing a.x.

Local, recursive bindings can be made by means of a let-
in construct. An expression of the form with e1; e2 where e1

describes an attribute set adds the attributes of e1 to the scope while
evaluating e2. This is often used in the form with import path; e2

where path refers to a file containing an attribute set – the construct
then simulates opening and importing a module.

Functions Anonymous functions are introduced using a colon
to separate the argument from the body. The identity function
can be written as x : x, the constant function in curried form
as x : y : x. For functions taking attribute sets as arguments,
there is a special syntax that allows to pattern match on specific
attributes by name (for instance used in the xmonad expression in
Figure 1). Like in ML or Haskell, function application is denoted
by juxtaposing two expressions.

Derivations The most important built-in function is derivation.
Usually, a Nix expression will not directly invoke derivation,
but rather call a wrapper function such as stdenv.mkDerivation
that fills in boilerplate code. The function takes an attribute set and
interprets it as a build action for a package. It returns the origi-
nal attribute set, extended with a few additional attributes. One of
the new attributes is outPath, the path in the Nix store where the
complete output of the build action is stored.

The attribute set passed to the derivation function must define
the attributes system, name, and builder. The attribute builder
is interpreted as the invocation of a program that produces the



e→∗ {~b} x = e′ ∈ ~b

e.x→ e′
(select)

~bs ≡ {x = (rec {~b1 / ~b2}).x | x ∈ dom (~b1 ∪ ~b2)}

rec {~b1 / ~b2}→ {~b1[~bs];~b2}
(rec)

x /∈ dom (~b1 ∪ ~b2)

let ~b1 / ~b2 in e→ (rec {~b1; x = e / ~b2}).x
(let)

e1 →∗ {~b}

with e1; e2 → e2[~b]
(with)

e1 →∗ x : e3

e1 e2 → e3[x = e2]
(apply1)

e1 →∗ {~x} : e3 e2 →∗ {~b} ~b ∼ ~x→ ~b′

e1 e2 → e3[~b′]
(apply2)

Figure 6. Evaluation rules of the Nix expression language

x = e ∈ ~b ~b ∼ ~x→ ~b′

~b ∼ x,~x→ x = e;~b′
(matchnonempty)

~b ∼ ε→ ε
(matchempty)

Figure 7. Matching

package. The program is run in a very restricted build environment,
but that environment is influenced by the other attributes in the
attribute set passed to derivation: each attribute is converted into
an environment variable of the same name. What exactly is passed
depends on the type of the attribute:

Strings, URIs and natural numbers are passed verbatim. A path
causes the referenced file to be copied to the store, and the cor-
responding store path is passed in the environment variable. That
way, sources, configuration files, patches and other inputs to the
build will all be part of the Nix store. Another derivation makes
that derivation a dependency of the current derivation – the depen-
dency is built first, and its output path is passed in the environment
variable. Lists are flattened into space-separated strings. Finally,
Booleans are passed as the empty string or 1.

4.2 Semantics
We give an operational semantics for the Nix expression language
by providing evaluation rules. The rules have the form e → e′, re-
ducing one expression to another. They always apply to the com-
plete Nix expression under consideration. In other words, reduction
proceeds as long as the full Nix expression constitutes a redex. We
write e→∗ e′ to denote that we can go from e to e′ in many steps.

Next to syntactic transformation on Nix expressions, evaluation
in Nix causes build actions to take place, such as described for the
built-in function derivation above. Note that we see the build
action as part of the evaluation, not a side-effect, as the Nix store
can be seen as an on-disk extension of the “heap” of our language.

Listing all the reduction rules, especially for all the built-in
functions and operators, would go beyond the space we have in
this paper. We therefore give a few representative evaluation rules
in Figure 6 that deal with functions and attribute sets.

Desugaring of inheritance For non-recursive attribute sets, the
binding inherit x is syntactic sugar for a binding x = x. If a
source is specified, for instance inherit (e) x, the desugaring is
x = e.x. Multiple attributes can be inherited in a single statement.
This is transformed into multiple bindings.

For recursive attribute sets, we have to be careful, because
desugaring x : rec { inherit x; y = x; } to x : rec { x = x; y
= x; } would incorrectly introduce infinite recursion. Therefore,
recursive attribute sets internally separate recursive attributes from
non-recursive (i.e., inherited) attributes (we write this rec {~b1 /
~b2}, and the above expression is desugared to x : rec { y = x; / x
= x; } where the x in the first binding points to the attribute bound
in the second binding, but the x on the right hand side of the second
binding points to the lambda-bound x. For the evaluation rules, we
therefore assume that non-recursive attribute sets can be written in
the form {~b} where each b is of the form x = e, and that recursive
attribute sets are of the form rec {~b1 / ~b2}.

Operations on attribute sets The rule (select) describes how at-
tribute selection is reduced: the expression e must evaluate to an
attribute set containing bindings ~b. If there is a binding for the se-
lected attribute x, the corresponding expression e′ is returned.

The rule (rec) deals with unfolding a recursive attribute set. As
explained above, only the bindings ~b1 are actually considered to
be recursive. In these bindings, all references x to names from the
attribute set (written dom (~b1 ∪ ~b2)) are substituted with their un-
folding, i.e., a selection of the appropriate attribute x from the re-
cursive set rec {~b1 / ~b2} itself. We use a postfixed [~b] here to
denote the simultaneous substitution where all free occurrences of
the attributes bound in ~b are replaced by their associated expres-
sions. Note that the result of unfolding a recursive attribute set is
always a non-recursive attribute set.

In rule (let), a let-statement can be reduced to a recursive at-
tribute set where the body of the let is added as a fresh attribute.
The body is then selected from that attribute set.

For a with-statement (with), we first reduce e1 into an attribute
set with bindings ~b. We then add the attributes defined in ~b to the
scope for evaluating e2 by simply substituting these attributes in e2.

Function application On encountering a function application,
the function e1 is reduced. There are two rules for function ap-
plication, corresponding to the two forms of lambda abstraction in
the syntax. If the function is of the form x : e3, then rule (apply1)
applies, and we substitute the argument e2 for x in e3.

If the function is defined via pattern matching on an attribute set
(apply2), we also evaluate the argument e2 to an attribute set with
bindings ~b. We then match the bindings ~b against the formals ~x.
The matching results in another set of bindings ~b′ which we then
use as a substitution for the body of the function e3.

Rules for matching are shown in Figure 7. The rules (match-
nonempty) and (matchempty) traverse the set of formals ~x. Every
formal x is individually matched against the bindings. Matching
thus succeeds if ~x is a subset of dom ~b and computes the restric-
tion ~b to the attributes in ~x.

4.3 Design decisions
After having described the Nix expression language and its opera-
tional semantics, let us now point out three concepts that we believe
are really essential to the language: purity, laziness, and the use of
attribute sets as a prominent type.

While many aspects of the language (for instance, the fact
that it is dynamically and not statically typed) could certainly
be changed, the idea of functional package management crucially
requires the language to be pure. Laziness and attribute sets both
help significantly in making the system convenient to use.

Purity NixOS relies on the fact that a specific Nix expression has
one associated value that does not depend on the state of the system.
The Nix expression language is different from typical programming
languages in that some of the values associated with expressions



are actually directory trees with files in it, but that does not change
the fact that one (and only one) value is associated with a Nix
expression describing a derivation.

This referential transparency gives us the possibility to identify
a package with the Nix expression that builds it. When we evaluate
the same Nix expression multiple times – whether in a single com-
putation or in different ones – we can reuse the previous result be-
cause it cannot have changed. We can even download precomputed
results (i.e., precompiled binary packages) from other systems if
desired. Purity also implies that different build actions performed
at the same time do not influence each other, thus the Nix evaluator
can easily schedule builds to run in parallel. Parallel builds are en-
abled by default, for instance, to distribute Nixpkgs builds on our
compile farm among available machines and cores. By contrast, in
Make (Feldman 1979), enabling parallel builds is not safe in gen-
eral because build actions often interfere with each other.

Another aspect of purity is the integrity of the Nix store. Nix
maintains full control over the references that packages in the Nix
store have to other packages. All such references are fixed, i.e.,
they cannot be modified, and also the contents of the Nix store
are immutable. This allows us to keep packages from randomly
picking up untracked dependencies that might lead to unpredictable
system failures. It also ensures that we can use garbage collection
to identify unused packages and safely remove them.

Because purity is so central to NixOS, we discuss in Section 6.2
how we ensure that build actions are pure.

Laziness Evaluation of a derivation means performing a build
action, and build actions can be quite expensive: some packages
require a significant amount of sources to be downloaded from
the internet, others take several hours to compile. It is therefore
of utmost importance that a package is only built if it is necessary.

Only this allows us to write Nix expressions in a convenient
style: Packages are described by Nix expressions and these Nix
expressions can freely be passed around in a Nix program – as
long as we do not access the contents of the package, no evaluation
and thus no build will occur. For instance, the whole of the Nix
packagages collection is essentially one attribute set where each
attribute maps to one package contained in the collection. It would
be unthinkable to require the entire collection of packages to be
built if only one attribute was selected.

Moreover, Nix expressions typically contain more than just the
plain build descriptions – they store meta-information about the
packages as well, such as their version number, their homepage,
or a description of the package. If we could not access that infor-
mation without first building the package, the system would not be
practicable to use.

Attribute sets Attribute sets are very convenient because they are
so versatile. Most importantly, they give us named arguments. For
a language such as Nix, where most of the functions are first-order
functions taking a possibly very large number of dependencies, it
would be extremely inconvenient if all the arguments had to be
specified in a specific order. Package dependencies do not usually
have a natural total order, and as a Nix expression evolves, the
number of dependencies often changes. Being able to refer to
dependencies by name is therefore nearly a must.

Furthermore, attribute sets can be used to simulate a whole
number of other powerful language concepts easily: for example,
they can be used as both modules and objects, without having to
add a huge number of additional language concepts.

Attribute sets also give us a form of subtyping. We can, for
instance, bundle together a number of packages in a set and pass
it to a function that expects only a subset of those packages.

The reader may wonder if the Nix expression language could
have been implemented as an embedded DSL (e.g., in Haskell). For

pkgs.writeText "ssh_config" ’’
SendEnv LANG LC_ALL ...
${if config.services.sshd.forwardX11 then ’’

ForwardX11 yes
XAuthLocation ${pkgs.xorg.xauth}/bin/xauth

’’ else ’’
ForwardX11 no

’’}
’’

Figure 8. Nix expression to build ssh config

instance, Sloane (2002) embedded a similar build language (based
on Odin (Clemm 1986)) in Haskell. This is certainly possible, but
it would be painful to use: for instance, features such as string
interpolation or functions over attribute sets would not be available.

5. NixOS
In Section 3 we saw that the purely functional approach of the Nix
package manager solves many problems that plague “imperative”
package management systems. We have previously used Nix as a
package manager under existing Linux distributions and other op-
erating systems, such as Mac OS X, FreeBSD and Windows to de-
ploy software alongside the “native” package managers of those
systems. In this section we describe NixOS, a Linux distribution
entirely built on Nix. It uses Nix not just for package management
but also to build all other static parts of the system. This exten-
sion follows naturally: while Nix derivations typically build whole
packages in an atomic action, they can build any file or directory
tree so long as it can be built in a pure way. For instance, most
configuration files in /etc in a typical Unix system do not change
dynamically at runtime and can therefore be built by a derivation.

For example, the expression in Figure 8 generates a simple
configuration file (ssh config) for the SSH client program in the
Nix store (i.e., /nix/store/hash-ssh config). The helper function
pkgs.writeText returns a derivation that builds a single file in the
Nix store with the specified name and contents. The contents in
this case is a string containing an interpolation that return different
file fragments depending on configuration options set by the user
(discussed below). Namely, if the option services.sshd.forwardX11
is enabled, the SSH option ForwardX11 should be set to yes, and
furthermore SSH must be able to find the xauth program (to for-
ward X11 authentication credentials to the remote machine). This
means that this configuration file has an optional dependency on
the xauth package: depending on a user configuration option, the
configuration file either does or doesn’t reference xauth. This kind
of dependency between a configuration file and a software package
is generally not handled by conventional package managers, since
they don’t deal with configuration files in the same formalism as
packages: packages can have dependencies, but configuration files
cannot. In Nix, they are all derivations and therefore treated in the
same way. As a concrete consequence, the xauth package won’t
be garbage-collected if ssh config refers to it — an important con-
straint on the integrity of the system.

When we build this expression, a possible result might be

SendEnv LANG LC_ALL ...
ForwardX11 yes
XAuthLocation /nix/store/j1gcgw...-xauth-1.0.2/bin/xauth

It is worth noting that due to laziness, xauth will be built if
and only if config.services.sshd.forwardX11 is true. Thus, the lazi-
ness of the Nix expression language directly translates to laziness
in building packages. This is a crucial feature: while xauth is a tiny
package, many NixOS configuration options trigger huge depen-
dencies. For instance, the option services.xserver.enable = true



will cause a dependency on the X11 server (large), while ser-
vices.xserver.sessionType = ”kde” will bring in the K Desktop
Environment (very large).

Building a system, declaratively NixOS thus consists of a set
of Nix expressions that return derivations that build the various
parts that constitute a Linux system: static configuration files, boot
scripts, and so on. These build upon the software packages already
provided by Nixpkgs. Figure 9 shows a graph of a small subset of
the derivations that build NixOS. Each arrow a → b means that the
output of derivation a is an input to derivation b. Italic nodes denote
derivations that build configuration files; bold nodes build Upstart
service descriptions (see below); dotted nodes are scripts; dashed
nodes are various helper derivations that compose logical parts of
the system; and all other nodes are software packages. However,
this distinction is entirely conceptual. As far as Nix is concerned,
they are all derivations: pure, atomic build actions.

Among the points of interest in the graph are the following:

• The Linux kernel (kernel), along with external kernel modules
(drivers and other kernel extensions in the Linux model) such
as the NVIDIA graphics drivers (nvidiaDrivers) and the Intel
Wireless drivers (iwlwifi) that depend on it. These are part of
Nixpkgs. A very nice consequence of the purely functional
approach is that an upgrade of the kernel (i.e., a change to the
Nix expression that builds the kernel) will trigger a rebuild of all
dependent external kernel modules. This is in contrast to many
other Linux distributions, where a common scenario is that one
upgrades the kernel and then discovers that the X server will
not start anymore because the NVIDIA drivers were not rebuilt.
This is not possible here. (Of course the external modules might
not be compatible with the new kernel, but such a problem
usually manifests itself at build time; and one cannot activate
a new configuration unless all of it builds successfully.)
A small wrapper component (modulesTree) combines (through
symlinks) the kernel modules from the kernel package with
those from the external module packages in a single directory
tree. This is necessary because the kernel module loading com-
mand modprobe expects all modules to live in a single direc-
tory tree. This is an example of how we circumvent the impure
models of various tools and applications: modprobe espouses
an impure model where modules from various packages are
statefully installed in an existing directory. modulesTree turns
this into a purely functional discipline.

• The derivation initrd builds the initial ramdisk necessary for
booting the system. NixOS, as most modern Linux distribu-
tions, has the following boot process. The machine’s BIOS
loads the boot loader Grub (http://www.gnu.org/software/
grub/). Grub then lets the user choose the operating system to
boot, and in the case of Linux, loads the kernel and the initial
ramdisk. The latter contains a small root filesystem containing
everything necessary to allow the real filesystem to be mounted.
Notably, it must contain any kernel modules for the hardware
containing the filesystem (e.g. drivers for SCSI or USB), the
filesystem itself (e.g. ext3) and perhaps other modules such
as network drivers for remote booting. The initrd thus is not
fixed, but depends on the hardware configuration of the user. It
therefore contains a copy of the closure under the module de-
pendency relation of the set of modules needed (e.g. [”ext3”
”ata piix” ”sd mod”] for a Dell Latitude D630).
Furthermore, the initial ramdisk contains a boot script called
stage1Init, which loads the kernel modules, runs the filesystem
checker fsck if needed, mounts the root filesystem, and passes
control to the final boot script stage2Init.

{ntp, modprobe, glibc, writeText, servers}: 12

let
stateDir = "/var/lib/ntp";
ntpUser = "ntp";
config = writeText "ntp.conf" ’’ 13

driftfile ${stateDir}/ntp.drift
${toString (map (srv: "server $srv\n") servers)}

’’;
in

{ 14
name = "ntpd";

users = [ 15
{ name = ntpUser;

uid = (import ../system/ids.nix).uids.ntp;
description = "NTP daemon user";

}
];

job = ’’ 16
description "NTP daemon"

start on ip-up
stop on ip-down

start script 17
mkdir -m 0755 -p ${stateDir}
chown ${ntpUser} ${stateDir}
# Needed to run ntpd as an unprivileged user.
${modprobe}/sbin/modprobe capability || true

end script

respawn ${ntp}/bin/ntpd -n -c ${config} 18 \
-u ${ntpUser}:nogroup -i ${stateDir}

’’;
}

Figure 10. ntp.nix: Nix expression generating the NTP Upstart job

• A running system consists primarily of a set of services, such
as the X server, the DHCP client, the SSH daemon, and many
more. On NixOS, these are started and monitored by Upstart
(http://upstart.ubuntu.com/), which provides the init pro-
cess that starts all other processes. Upstart reads specifications
of system services from /etc/event.d and runs the commands
for each service when appropriate. Services can have dependen-
cies on eath other, e.g., the SSH daemon should be started when
networking comes up.
The Upstart service descriptions in /etc/event.d are built by
Nix expressions. Figure 10 shows the expression that builds
the service that runs the Network Time Protocol (NTP) client,
which synchronises the clock against those of a set of NTP
servers. It is a function 12 that takes as inputs the software
dependencies (such as the ntp package) and a configuration
option servers specifying the hostnames or IP addresses of
the NTP servers to use. It returns an attribute set containing
various properties of the service, such as its name, a set of
user accounts 15 that must be created for this service (by the
activation script, discussed below), and the text of the Upstart
service in the format expected by Upstart 16 .
There are two points of interest in the NTP service that are
representative of NixOS in general. First, it is self-initialising
and idempotent: at startup 17 , it creates the environment needed
by the ntpd daemon, such as the directory /var/lib/ntp. This
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Figure 11. Outputs of derivations related to the NTP service, as
well as the system profile

obviates the need for post-install scripts used in other package
managers and allows switching between configurations.
Second, the configuration file for the daemon is not stored in
/etc/ntp.conf, but in the Nix store, built by the writeText
helper function 13 . The path of the generated ntp.conf in the
store is directly substituted in the generated Upstart service file
through the string interpolation at 18 . While this is not a big
deal for the NTP service, it is very important for other services:
for instance, it makes it trivial to run multiple web servers side-
by-side, such as production and test instances, simply by instan-
tiating the appropriate function multiple times with different ar-
guments. The use of “global variables” such as /etc/ntp.conf
would preclude this. Figure 11 shows the outputs of the deriva-
tions for the NTP service.

• By contrast to ntp.conf, some files are still needed in /etc,
mostly because they are “cross-cutting” configuration files
that cannot be feasibly passed as build-time dependencies to
every derivation. Some constitute mutable state that aren’t
dealt with in the functional model at all, such as the sys-
tem password file /etc/passwd or the DNS configuration file
/etc/resolv.conf, which must be modified at runtime. How-
ever, others are static (only change as a result of explicit recon-
figurations) but still crosscutting, such as the static host name
resolution list /etc/hosts. These are built by Nix expressions
and stored in the Nix store. The etc derivation in Figure 9 takes
as inputs the files that are needed in /etc and combines them
into a tree of symlinks. Later, the activation script (described
below) copies these symlinks into /etc.

• systemPath is a set of symlinks to selected packages and is
placed in the users’ PATH environment variable. Since it is
constructed by a Nix expression, it enables declarative pack-
age management. By contrast, manual package management
actions like nix-env -i (Section 3) are stateful and don’t use a
declarative specification to define the set of installed packages.

• Building a NixOS configuration is entirely pure; it only com-
putes values (files and directories) in the Nix store. But to ac-
tivate a configuration requires actions to be performed; system
services must be started or stopped, user accounts for system
services must be created, symlinks in /etc must be created (see
above), and so on. This is done by the activation script (built by
derivation activateConfiguration).

• The stage 2 initialisation script (stage2Init) performs boot-time
initialisation and runs the activation script.

• Finally, the system derivation itself simply creates symlinks to
its inputs, e.g. $out/kernel links to the kernel image.

Thus, given the top-level Nix expression for NixOS (installed in
/etc/nixos/nixos/default.nix), the commands

$ nix-build /etc/nixos/nixos -A system
$ ./result/activate

build the entire configuration, including all software dependencies,
configuration files, Upstart jobs, etc., leaving a symlink result in the
current directory; and then run the activation script. When switch-



{
boot = {

grubDevice = "/dev/sda";
kernelModules = ["fuse" "kvm-intel"];

};
fileSystems = [

{ mountPoint = "/";
device = "/dev/sda1";

}
];
services = {

sshd = {
enable = true;
forwardX11 = true;

};
xserver = {

enable = true;
videoDriver = "nvidia";
sessionType = "kde";

};
};

}

Figure 12. configuration.nix: NixOS configuration specification

ing to the new configuration, the activation script stops any Upstart
services that have disappeared in the new configuration, starts new
services, restarts services that have changed, and leaves all other
services untouched. It can determine precisely which services have
changed by comparing the store paths of the Upstart service files: if
they are different, then by definition some input in the dependency
graph of the service changed, and a restart may be needed.

Using NixOS Of course, we cannot expect the average user to
reconfigure her system by editing the various Nix expressions in
Figure 9, then rebuilding the configuration. Instead, NixOS has a
single configuration file, /etc/nixos/configuration.nix, that con-
tains a nested attribute set specifying all configuration pertaining to
the user’s system. An example of this configuration file is shown
in Figure 12. This expression is passed as an argument to the
top-level NixOS expression, /etc/nixos/nixos/default.nix, which
distributes its attributes to the appropriate subexpressions. For in-
stance, the attribute services.sshd.forwardX11, seen above, is dis-
tributed to the function that builds the file ssh config.

The configuration of the system is updated by editing configu-
ration.nix and then running

$ nixos-rebuild switch

which builds the system attribute of the top-level NixOS expres-
sion, installs it in the profile /nix/var/nix/profiles/system, and
then runs its activation script. The profile (see Section 3) is used
to enable rollbacks to previous configurations. Figure 11 shows the
symlinks from the profile to the configuration in the Nix store.

Alternatively, one can run the command nixos-rebuild test. This
will build and activate the configuration without installing it in
the profile. Thus, rebooting the system will automatically cause a
rollback to the current configuration in the system profile.

The system profile is used to generate the boot menu of the
Grub boot loader. Each non-garbage-collected configuration is
made available as a menu entry (see Figure 13). This allows the user
to recover trivially from bad upgrades (such as those that render the
system unbootable). A system can be rolled back without rebooting
by doing nix-env --rollback -p /nix/var/nix/profiles/system and
running the activation script.

NixOS itself is currently upgraded simply by updating the Nix
expressions in /etc/nixos from the Nix Subversion repository, i.e.
by doing svn up /etc/nixos/*.

Figure 13. The Grub boot menu for a NixOS machine

6. Evaluation
In this section, we reflect upon the extent to which the purely
functional model “works”, i.e., can be used to implement a useful
system, to what extent Nix derivations are pure, and to what extent
we need to compromise on purity.

6.1 Status
NixOS is not a proof-of-concept: it is in production use on a
number of desktop and server machines. Sources and ISO im-
ages of NixOS for i686 and x86 64 platforms are available at
http://nixos.org/. As of March 2008, the Nix Packages collec-
tion (on which NixOS builds) contains Nix expressions for some
1350 packages. These range from basic components such as the
C library Glibc and the C compiler GCC to end-user applications
such as Firefox and OpenOffice.org. NixOS has system services
for running X11 (including the 3D window manager Compiz, KDE
and parts of Gnome), Apache, PostgreSQL and many more. NixOS
is fairly unique among Linux distributions in that it allows non-
root users to install software, thanks in part to the purely functional
approach, which enables some strong security guarantees (Dolstra
2005, Section 3).

To provide some sense of the size of a typical configura-
tion (a laptop running X11, KDE and Apache, among other
things1): the build graph rooted at the top-level system attribute
in /etc/nixos/nixos/default.nix consists of 707 derivations (408
excluding fetchurl derivations) and 196 miscellaneous source files.
The closure of the output of the system derivation (i.e., its run-
time dependencies) consists of 340 store paths with a total size of
1053 MiB. Thus 367 of the 707 derivations are build-time-only
dependencies, such as source distributions, compilers and parser
generators. The evaluation of system imports 290 Nix expression
files in the NixOS and Nixpkgs trees, and takes 2.4 seconds of CPU
time on a Core 2 Duo 7700.

6.2 Purity
The goal of NixOS was to create a Linux distribution built and
configured in a purely functional way. Thus build actions should
be deterministic and therefore reproducible, and there should be no
“global variables” like /bin that prevent multiple versions of pack-

1 Revision 11437 of the configuration at https://svn.nixos.org/repos/
nix/configurations/trunk/misc/eelco-dutibo.nix.



ages and services to exist side-by-side. There are several aspects to
evaluating the extent to which we reached those goals.

Software packages Nix has no /bin, /usr, /lib, /opt or other
“stateful” directories containing software packages, with a sin-
gle exception: there is a symlink /bin/sh to an instance of the
Bash shell in the Nix store. This symlink is created by the acti-
vation script. /bin/sh is needed because very many shell scripts
and commands refer directly to it; indeed, the C library function
system() has a hard-coded reference to /bin/sh. To our surprise,
/bin/sh is the only such compromise that we need in NixOS.
Other hard-coded paths in packages (e.g., references to /bin/rm or
/usr/bin/perl) are much less common and can easily be patched
on a per-package basis. Such paths are uncommon in widely used
software because they are not portable in any case (e.g., Perl is typi-
cally, but not always installed in /usr/bin/perl). They are relatively
more common in Linux-specific packages that we needed to add to
Nixpkgs to build NixOS.

An interesting class of packages to support are binary-only
packages, such as Adobe Reader and many games. While Nix
is primarily a source-based deployment system (with sharing of
pre-built binaries as a transparent optimisation, as discussed in
Section 3), binary packages can be supported easily: they just have
a trivial build action that unpacks the binary distribution to $out.
However, such binaries won’t work as-is under NixOS, because
ELF binaries (which Linux uses) contain a hard-coded path to the
dynamic linker used to load the binary (usually /lib/ld-linux.so.2
on the i386 platform), and expect to find dependencies in /lib and
/usr/lib. None of these exist on NixOS for purity reasons. To
support these programs, we developed a small utility, patchelf, that
can change the dynamic linker and RPATH (runtime library search
path) fields embedded in executables. Thus, the derivation that
builds Adobe Reader uses patchelf to set the acroread program’s
dynamic linker to /nix/store/...-glibc-.../lib/ld-linux.so.2 and its
RPATH to the store paths of GTK and other needed libraries passed
as function arguments to the derivation.

Configuration data NixOS has many fewer configuration files in
/etc than other Linux distributions. This is because most config-
uration files concern only a single daemon, which almost always
has an option to specify the full path to the configuration file in the
Nix store directly (such as ntpd -c ${config} in Figure 10). What
remains is cross-cutting configuration files, which, as discussed in
Section 5, are built purely but then symlinked in /etc by the con-
figuration’s activation script. The configuration above has just 39
such symlinks.

Mutable state NixOS does not have any mechanism to deal di-
rectly with mutable state, such as the contents of /var. These are
managed by the activation script and the system services in a stan-
dard, stateful way. Of course, this is to be expected: the running of
a system (as opposed to the configuration) is inherently stateful.

Runtime dependencies In Nix, we generally try to fix runtime
dependencies at build time. This means that while a program may
execute other programs or load dynamic libraries at runtime, the
paths to those dependencies are hard-coded into the program at
build time. For instance, for ELF executables, we set the RPATH
in the executable such that it will find a statically determined set of
library dependencies at runtime, rather than using a dynamic mech-
anism such as the LD LIBRARY PATH environment variable to
look up libraries. This is important, because the use of such dy-
namic mechanisms makes it harder to run applications with con-
flicting dependencies at the same time (e.g., we might need Fire-
fox linked against GTK 2.8 and Thunderbird linked against GTK
2.10). It also enhances determinism: a program will not suddenly
behave differently on another system or under another user account
because environment variables happen to be different.

However, there is one case in NixOS and Nixpkgs of a library
dependency that must be overridable at runtime and cannot be fixed
statically: the implementation of OpenGL to be used at runtime
(libGL.so), which is hardware-specific. We build applications that
need OpenGL against Mesa, but add the impure (stateful) path
/var/run/opengl-driver to the RPATH. The activation script sym-
links that path to the actual OpenGL implementation selected by
the configuration (e.g., nvidiaDriver) to allow programs to use it.

Build actions The Nix model is that derivations are pure, that is,
two builds of an identical derivation should produce the same result
in the Nix store. However, in contemporary operating systems,
there is no way to actually enforce that model. Builders can use
any impure source of information to produce the output, such as
the system time, data downloaded from the network, or the current
number of processes in the system as seen in /proc. It is trivial
to construct a contrived builder that does such things. But build
processes generally do not, and instead are fairly deterministic;
impure influences such as the system time generally do not affect
the runtime behaviour of the package in question.

There are however frequent exceptions. First, many build pro-
cesses are greatly affected by environment variables, such as PATH
or CFLAGS. Therefore we clear the environment before starting
a build (except for the attributes declared by the derivation, of
course). We set the HOME environment variable to a non-existent
directory, because some derivations (such as Qt) try to read settings
from the user’s home directory.

Second, almost all packages look for dependencies in impure lo-
cations such as /usr/bin and /usr/include. Indeed, the undeclared
dependencies caused by this behaviour are what motivated Nix in
the first place: by storing packages in isolation from each other,
we prevent undeclared build-time dependencies. In five years we
haven’t had a single instance of a package having an undeclared
build-time dependency on another package in the Nix store, or hav-
ing a runtime dependency on another package in the Nix store not
detected by the reference scanner. However, with Nix under other
Linux distributions or operating systems, there have been numerous
instances of packages affected by paths outside the Nix store. We
prevent most of those impurities through a wrapper script around
GCC and ld that ignores or fails on paths outside of the store. How-
ever, this cannot prevent undeclared dependencies such as direct
calls to other programs, e.g., a Makefile running /usr/bin/yacc.

Since NixOS has no /bin, /usr and /lib, the effect of such impu-
rities is greatly reduced. However, even in NixOS such impurities
can occur. For instance, we recently encountered a problem with
the build of the dbus package, which failed when /var/run/dbus
didn’t exist.

As a final example of impurity, some packages try to install files
under a different location than $out. Nix causes such packages
to fail deterministically by executing builders under unprivileged
UIDs that do not have write permission to other store paths than
$out, let alone paths such as /bin. These packages must then be
patched to make them well-behaved.

To ascertain how well these measures work in preventing im-
purities in NixOS, we performed two builds of the Nixpkgs collec-
tion2 on two different NixOS machines. This consisted of building
485 non-fetchurl derivations. The output consisted of 165927 files
and directories. Of these, there was only one file name that dif-
fered between the two builds, namely in mono-1.1.4: a directory
gac/IBM.Data.DB2/1.0.3008.37160 7c307b91aa13d208 ver-
sus 1.0.3008.40191 7c307b91aa13d208. The differing number
is likely derived from the system time.

2 To be precise, the i686-linux derivations from build-for-release.nix in
revision 11312 of https://svn.nixos.org/repos/nix/nixpkgs/branches/
purity-test.



We then compared the contents of each file. There were differ-
ences in 5059 files, or 3.4% of all regular files. We inspected the
nature of the differences: almost all were caused by timestamps be-
ing encoded in files, such as in Unix object file archives or compiled
Python code. 1048 compiled Emacs Lisp files differed because the
hostname of the build machines were stored in the output. Filtering
out these and other file types that are known to contain timestamps,
we were left with 644 files, or 0.4%. However, most of these dif-
ferences (mostly in executables and libraries) are likely to be due
to timestamps as well (such as a build process inserting the build
time in a C string). This hypothesis is strongly supported by the fact
that of those, only 42 (or 0.03%) had different file sizes. None of
these content differences have ever caused an observable difference
in behaviour.

7. Related work
This paper is about purely functional configuration management
of operating systems. It is not about implementing an operating
system in a (purely) functional language. Hallgren et al. (2005) did
the latter in Haskell in their operating system House, and a number
of systems have been implemented in impure functional languages.

DeTreville (2005) proposed making system configuration declar-
ative. NixOS is a concrete, large-scale realisation of that notion.
Tucker and Krishnamurthi (2001) proposed modelling packages
and system configurations using the unit system of MzScheme,
allowing functional abstraction, explicit composition and multi-
ple instantiations of packages and system services. Beshers et al.
(2007) discuss a Linux distribution that not only uses functional
programming to implement various system administration tools,
but applies a functional mindset to those tasks. Notably, the auto-
builder tool builds binary packages for the Linspire Linux distri-
bution in a purely functional way: from a set of source packages
it builds immutable binary packages. However, this is not used for
the actual package management on end-user systems, nor does it
extend to building complete system configurations.

Cfengine (Burgess 1995) is a well-known system configuration
management tool. Cfengine updates machines on the basis of a
declarative specification of actions (such as “a machine of class
X must have the following line in /etc/hosts”). However, these
actions transform a possibly unknown state of the system, and can
therefore have all the problems of statefulness.

8. Conclusion
We demonstrated that a realistic operating system can be built and
configured in a declarative, purely functional way with very few
compromises to purity.

Future work We are investigating how to extend the Nix expres-
sion language with a type system. In the long term, we do not just
want to check as much as possible of the current structural type sys-
tem statically, but also introduce user-defined datatypes, such that
for instance all variants of a single package such as GHC have the
same type, and one cannot inadvertently pass a different package as
a parameter where really GHC is expected. Currently, such a pack-
age fails at evaluation time, which is not much of a problem in the
case of important dependencies, because the error will most likely
occur prior to distribution. However, since Nix encourages to write
descriptions with many parameters such as optional dependencies,
it is impossible to test all possible configurations in advance.

Given that we can specify and build configurations for single
machines declaratively, the logical next step is to extend our ap-
proach to sets of machines, so that the configuration of a network of
machines can be specified centrally. This will allow interdependen-
cies between machines (such as a database server on one machine
and a front-end webserver on another) to be expressed elegantly.

Furthermore, not all machines need to be physical machines: given
a declarative specification, it is possible to automatically instantiate
virtual machines that implement the specification. Apart from eas-
ing the deployment of virtual machines, this will enable simulation
and debugging of distributed deployments.

Finally, as noted in Section 6.2, our model assumes that builds
are pure, but current operating systems cannot enforce this. An
interesting idea would be to add support for truly pure builds, e.g.,
kernel modifications to support the notion of a “pure process”: one
that is guaranteed to give the same output for some set of inputs.
This would mean, for instance, that the time() system call must
return a fake value, network access is blocked, files outside of a
specified set are invisible, and so on.
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